
phylomodels

Institute for Disease Modeling

Feb 18, 2022

CONTENTS

1 Documentation 3

2 Files 5

3 Data structures 7

4 Installation 9

5 Requirements/Dependencies 11

6 Examples 13
6.1 Models . 13
6.2 Features . 15
6.3 Calibration . 18
6.4 Test . 21
6.5 Examples . 22
6.6 API reference . 23
6.7 To do . 29

i

ii

phylomodels

Python-based library with utilities for modeling and calibration, with emphasis on exploiting phylogenetic data.

Contents

• Documentation

• Files

• Data structures

• Installation

• Requirements/Dependencies

• Examples

CONTENTS 1

phylomodels

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

Documentation is available at https://docs.idmod.org/projects/phylomodels/en/latest/.

3

https://docs.idmod.org/projects/phylomodels/en/latest/

phylomodels

4 Chapter 1. Documentation

CHAPTER

TWO

FILES

phyloModels contains the following folders:

calibration Algorithms and tools for model calibration.

docs Documentation and notes.

examples Battery of examples and use-cases of modules.

features Summary statistics for structured (e.g., time series) and unstructured (e.g., trees, graphs) data.

models Algorithms and tools for disease transmission models.

network Algorithms and utilities for generation and manipulation of graphs/trees/networks.

sampling Algorithms and utilities for sampling model generated data.

test Main programs that test the library and demonstrate its performance.

utilities Miscellaneous functions (read/write from/to files, data conversions, etc.)

visualization Functions and utilities for visualization.

5

phylomodels

6 Chapter 2. Files

CHAPTER

THREE

DATA STRUCTURES

Structured data is represented using Pandas dataframes. Phylogenetic trees are represented using ETE3 tree objects.

7

phylomodels

8 Chapter 3. Data structures

CHAPTER

FOUR

INSTALLATION

1. Download the library:

git clone https://github.com/InstituteforDiseaseModeling/phyloModels

2. Install dependencies.

Packages not on PyPI will not be installed by setuptools in step 3 below. Hence, they should be installed
separately. These packages include CUDA and History Matching (at this time, CUDA and History Matching
are required only for the calibration module; functions in other modules can run without these libraries).

We recommend using a virtual environment. You can configure a virtual environment using the Conda definition
file that is included in this package, or you can create a virtual environment with the required dependencies from
scratch. Follow one of the steps below:

• Create and configure virtual environment using an environment definition file.

A Conda environment definition file is provided with this package. This file, called phylomodels_env.yml,
includes definitions of all requirements, even packages not on PyPI. To use it for installing dependen-
cies, edit the first line to set the name of the environment, and then execute the following commands for
installing and activating a conda environment that satisfies all required dependencies:

conda env create -f phylomodels_env.yml
conda activate [environment name]`

Note: In some systems, the environment activation command is source activate
[environment name] instead of conda activate [environment name].

• Create and configure virtual environment using Conda.

Other than CUDA libraries, which are only used for the calibration module, most of the dependencies can
be installed during the installation step (see item 3 below). However, there is an exception with some of the
dependencies of the ETE3 library, which is used for representing tree data structures. These dependencies
and their required versions can be installed as follows:

conda create --name [environment name] python==3.7
conda activate [environment name]
pip install PyQt5==5.11.3

• Create and configure virtual environment using venv.

The process is similar to creating a Conda virtual environment:

9

phylomodels

python3 -m venv [environment name]
source [environment name]/bin/activate
pip install PyQt5==5.11.3

3. Install the package:

python3 setup.py develop

Note: Alternatively, you could run python3 setup.py install if you plan on using the package as is,
without making any changes to the code.

4. Register environment as jupyter kernel (optional).

You may need to manually add the new environment as a jupyter kernel. With the conda environment activated,
this can be done as follows:

python -m ipykernel install --user --name [environment name] --display-name
→˓"Python ([environment name])"

10 Chapter 4. Installation

CHAPTER

FIVE

REQUIREMENTS/DEPENDENCIES

See dependencies in setup.py and phylomodels_env.yml.

11

phylomodels

12 Chapter 5. Requirements/Dependencies

CHAPTER

SIX

EXAMPLES

• Computing summary statistics on phylogenetic trees: phylomodels/examples/features_computeTreeFeatures/features_computeTreeFeatures.ipynb

• Model calibration using History Matching: phylomodels/examples/calibration_historyMatching_featureSelectionForSIR/calibration_historyMatching_featureSelectionForSIR.ipynb

6.1 Models

The phylomodels.models module contains wrappers to models, as well as any code required for execution of
models. The goal of this module is to provide a standard interface for sampling, feature extraction, and calibration
functions.

6.1.1 File structure

This folder is organized as a collection of model wrappers. The wrappers themselves are (typically small) Python
functions coded inside individual files. Additional functions (and files) that are necessary for the execution of a model
must be in an individual subfolder. Optionally, there could be a test script for each individual wrapper.

For example, an SIR stochastic simulator based on Gillespie’s tao-leap method is coded as a class called
sirTaoLeap. This class is coded in a file called sirTaoLeap.py. The file structure for phyloModels-standard
access to sirTaoLeap is as follows (see naming conventions below):

sir_taoLeap_getIncidence.py Wrapper function for accessing sirTaoLeap.

test_sir_taoLeap_getIncidence.py Optional script for testing the sir_taoLeap_getIncidence wrapper.

./sir_taoLeap sirTaoLeap class and auxiliary functions.

Note: A separate folder with model code may not be always necessary. For example, accessing models from a package
that is already installed (and whose code is located in a separate folder/folder structure) may be called directly from
the wrapper.

13

phylomodels

6.1.2 Naming conventions

Wrappers

Wrappers should be named as follows:

[type]_[descriptive name of model/library][_configuration name (optional)]

type Indicates the type of model that is being implemented. Type can be any of the following:

• sir for SIR models (or variations of sir for other compartmental models (e.g., SEIR)

• distributions for random variables and probability distributions

descriptive name of model/library References the model or library that is being used by this wrapper.

configuration name Optional, describes a particular configuration mode used when calling the model.

The following are examples of wrapper names for different configurations of a model called sirTaoLeap:

sir_taoLeap
sir_taoLeap_getIncidence
sir_taoLeap_getPrevalence
sir_taoLeap_getIncidenceSampled
sir_taoLeap_getSampledIncidence

Tests

Wrapper test scripts should take the name of the wrapper with the test_ prefix.

Subfolders

As mentioned above, any other file necessary for interfacing a model (or executing it) must be placed in a separate
subfolder. The subfolder should be named as follows:

[type]_[descriptive name of model/library]

where type and descriptive name of model/library follow the descriptions mentioned for the wrappers
above.

For example, a subfolder containing files for the sirTaoLeap model described for wrappers above should be named
sir_taoLeap.

Note that the existence of a subfolder for a given model is optional. A subfolder should only be created if there is at
least one file (other than the wrapper) necessary for calling a model.

6.1.3 Inputs

Each wrapper receives only one input argument. This argument is a pandas dataframe. Each row of this dataframe is
a set of arguments to be used as input for the model call. Columns are the arguments that will be passed to the model.

The input dataframe must not be modified by the wrapper or model.

14 Chapter 6. Examples

phylomodels

6.1.4 Outputs

The output is a tuple with the following items (in order):

1. A pandas dataframe, with the same number of rows of the input argument. Each row of this dataframe is the
(possibly reformatted) model output corresponding to the input dataframe row. The output dataframe could be,
for example, a time series.

2. A list of NetworkX structures. Each item of this list corresponds to the output of the model to the arguments in
the corresponding row of the input dataframe.

6.2 Features

The phylomodels.features module contains the definition of the features class, as well as internal methods
and functions used by this class. The features class is an interface for the definition, computation, and general
analyses of features. We may also refer to features as summary statistics.

The ultimate goal of the features module is to provide a standard interface that enables easy and streamlined
definition, addition, deletion, and overall management of individual features. When using this module, the addition of
a new feature in a given Python script should take at most 1 additional line of code. Coding and integration of new
features could be also made in a few minutes.

For example, the basic usage of this module within a Python program should look as follows:

x = readTimeSeries() # One or more time series to be analyzed
f = features(x) # Instantiation of features object
f.compute() # Compute features
y, s = f.get() # Extract features and statistics as a Pandas DataFrame

Computation of features can be enabled/disabled either by groups or individually:

f.disableFeature(group="all") # Disable computation of all available
features

f.enableFeature(name="series_sum") # Enable computation of the feature called
series_sum

f.compute() # Only series_sum is computed

6.2.1 File structure

features.py Definition of features class

inventory.py Methods and auxiliary functions for management of features.

testFeatures.py Test script.

./graphs Methods and auxiliary functions for features that are obtained from graphs.

./series` Methods and auxiliary functions for features that are obtained from time series.

./statistics Methods and auxiliary functions for computing statistics on computed features.

6.2. Features 15

phylomodels

6.2.2 Inputs

The instantiation of a features object can receive any of the following inputs, which are attributes of the features
class:

x Set of time series to analyze. This is a pandas dataframe with m rows by n columns. m is the number of sequences
(i.e., each row is a different time series) and m is the length of each sequence.

xref Reference time series. This is a a pandas dataframe with 1 row and m columns, where m is defined as in x above.

g Set of graphs (e.g., trees) to analyze. This is a list of NetworkX data structures (see https://networkx.github.io/).

gref Reference graph. This is a NetworkX data structure.

6.2.3 Core methods

There main methods for the computation and analysis of features are:

compute Compute all the features and statistics currently enabled (see “Management of features” below for details
on enabling/disabling features).

get Return features and statistics rendered by the compute method.

6.2.4 Management of features

The features class can extract and/or generate any number of features. Features are only computed when the compute
method is called. Important notes regarding the management of features:

Available features Potential features to be extracted or generated should be in an inventory of features. This inventory
is an attribute called availableFeatures. availableFeatures is a list of feature cards.

Feature card A feature card contains a brief description of a feature, as well as information regarding the actual
function that computes the feature. It is defined based on the following namedtuple:

featureCard \\
= collections.namedtuple(

"featureCard",
["id", "name", "description", "subroutine"]

)

where “id” is an integer, “name” is a string (see naming conventions below), “subroutine” is the name of the
function that extracts and/or computes the feature, and “parameters” is a list of arguments for said function.

Enabled features A feature is to be computed only if it is enabled. In general, the compute method loops over
availableFeatures and checks if they are enabled. If so, then the corresponding subroutines are called.
The status of a feature (enabled/disabled) is maintained in the Boolean attribute enabledFeatures.

Methods

enableFeature Enable the computation/extraction of a feature or group of features.

disableFeature Disable the computation/extraction of a feature or group of features.

listFeatures Display list of available features.

listActiveFeatures Display list of active (i.e., enabled) features.

16 Chapter 6. Examples

https://networkx.github.io/

phylomodels

6.2.5 Designing and integrating new features

• Each feature must be computed by a single function. The goal is for each of these functions to be very short.
This makes it easy to code, easy to review, and easy to maintain.

• Each feature function receives two arguments, namely: input x transformed into a numpy array of size m x n
(with m and n defined as indicated above), followed by input xref transformed into a numpy array. Not all the
arguments have to be used by a feature function, but the order in which arguments are passed to the function
must be maintained.

• Each feature function returns a Pandas DataFrame. Each row in this DataFrame is the output for the corre-
sponding row/item in the input (e.g., row k of the DataFrame is the output corresponding to row k in x and
g.

• Each feature function must be in a separate file (typically of just a few lines). The name of the file must be the
same name of the feature function. It must also follow the naming conventions described below.

• A new feature function is integrated into the module by moving its corresponding file to the subfolder ./
series or ./graphs, depending on which type of feature it is. In addition, the __init__.py file on the
corresponding subfolder must be edited to include a line importing the function. This line looks like this:

from [series/graphs] import [function name]

• Naming conventions: Features should be named as follows:

[type of input]_[transformation of the input]_[other labels]

For example:

series_sum
series_derivative
graph_nodes
graph_degree

6.2.6 Statistics

• Statistics describe the behavior of the computed features. For example, the mean statistic finds the average of
every column in the DataFrame rendered by the method get.

• Management and design of statistics follow the same principles than those described for management and design
of features, with a few changes:

– Inventory management is done using the arrays availableStats and enabledStats.

– The inventory management methods are: enableStatistic, disableStatistic,
listStatistics, registerStatistic.

– Files that contain the code for computing a statistic must be saved into the ./statistics subfolder.

6.2. Features 17

phylomodels

6.2.7 Utilities

The following utility methods are available:

getArguments Returns x, xref, g, and gref.

listFeatures Display available features.

listActiveFeatures Display active features.

printArguments Display the contents of x, xref, g, and gref.

printFeatures Display the features dataframe.

printStats Display statistics.

6.3 Calibration

The phylomodels.calibration module contains wrappers to calibration functions and libraries, as well as any
code required for their use. The goals of this module are to provide a standard interface for calibration jobs, as well as
maintaining a battery of calibration methods that are well suited for our needs.

There are two types of tasks that can be done using functions in this module:

• calibration initialization, which generates one or more initial points for faster convergence of calibration algo-
rithms; and

• calibration, which executes an actual calibration job.

Calibration algorithms could use the output of an initialization algorithm. However, the use of initialization algorithms
is not required.

6.3.1 File structure

This directory is organized as a collection of wrappers for calibration and calibration initializers. The wrappers are
Python functions. The name of the function should be the same name of the file that contains it. Additional func-
tions (and files) that are necessary for the execution of a calibration algorithm or initializer must be in an individual
subdirectory. Optionally, there could be a test script for each wrapper.

For example, a basic configuration of history matching as an initializer could require the following file structure:

init_historyMatching_basic Wrapper function for history matching.

test_init_historyMatching_basic Optional script for testing the basic configuration of history matching.

./init_historyMatching Auxiliary functions for the execution of history matching.

Note: A separate folder with model code may not be always necessary. For example, accessing models from a
package that is already installed (and whose code is located in a separate folder/folder structure) may be done directly
from the wrapper.

18 Chapter 6. Examples

phylomodels

6.3.2 Naming conventions

Wrappers

Wrappers should be named as follows:

[type]_[descriptive name of algorithm/method/library][_configuration name (optional)]

type Indicates the type of operation that is being done. It can be:

• init, for calibration initializer; or

• cal, for calibration operations.

descriptive name of algorithm/method/library Refers to the algorithm or library that is being used by this wrapper.

configuration name Optional, describes a particular configuration mode used when calling the algorithm.

The following are examples of wrapper names for different configurations of a history matching initializer:

init_historyMatching
init_historyMatching_poissonBasis
init_historyMatching_gaussianBasis
init_historyMatching_rejectionRules
init_historyMatching_rejectionRules_PoissonBasis

Tests

Wrapper test scripts should take the name of the wrapper with the test_ prefix.

Subfolders

As mentioned above, any other file necessary for interfacing a method or library must be placed in a separate subfolder.
The subfolder should be named as follows:

[type]_[descriptive name of algorithm/method/library]

where type and descriptive name of algorithm/method/library follow the descriptions mentioned
for the wrappers above.

For example, a subfolder containing files for using history matching would be named init_historyMatching.

Note: The existence of a subfolder for a given method is optional. A subfolder should only be created if there is at
least one file (other than the wrapper) necessary for calling a model.

6.3. Calibration 19

phylomodels

6.3.3 Inputs

Initializers

Each wrapper receives the following arguments (in this order):

xInfo Name and range of model parameters. This is a pandas dataframe with 3 columns, namely: name, min, and
max. Each row of the dataframe contains the corresponding information for a given model parameter.

y Observation or measurements. This is a pandas dataframe. Columns in this dataframe are the features that will be
used for calibration. The name of the features correspond to names of features that can be computed by the fea-
tures module (those names are used by the calibration algorithm for configuring calls to features methods. The
first row of y contains the observations that will be used by the calibration method for fitting the model. Option-
ally, the second row may contain the variance of each observation. The variance may be used by initialization
and/or calibration algorithms.

model Pointer to model or model wrapper. The interface to the model (or its wrapper) should be the one defined in
the phylomodels.models module.

params Other parameters for the initializer. This argument is a Python dictionary (i.e., key-value pairs with the name
of the parameters and their value).

Inputs to initializers must not be modified by the initializer (or any of the functions called internally by the initializer).

Calibration solvers

Each calibration solver receives the following arguments (in this order):

xInfo Name and range of model parameters (see description of initializer inputs above).

xInit Initial value(s) or guess of model parameters. This is a pandas dataframe where columns refer (and are named
according) to parameters of the model, and rows are initial values for the solver.

y Observations or measurements (see description of initializer inputs above).

model Pointer to model or model wrapper (see description of initializer inputs above).

params Other parameters for the calibration method. This argument is a Python dictionary.

Inputs to calibration functions must not be modified by the calibration function, or by any of the subroutines called
internally by the function).

6.3.4 Outputs

Initializers

Each initializer returns a single output. The output is a pandas dataframe containing one or more sets of parameters
(i.e., the initial values) that can be used as inputs for a calibration method. Ideally, the output of an initializer either
characterizes a reduced parameter space, or provides an initial point (or set of points) for faster convergence of calibra-
tion methods. Each column of the output dataframe contains the values for a parameter (the names of the columns are
indicated by xInfo["name"]). Each row contains the values of a set of parameters for initialization of a calibration
method.

20 Chapter 6. Examples

phylomodels

Calibration solvers

Each calibration solver returns a single output. The output is a pandas dataframe. Columns of this dataframe are:

• Parameters of the model that render the solution. There is one column per parameter. Names of these columns
are defined by xInfo["name"].

• Distance (or cost) metric. This is a column with the distance metric obtained for each set of parameters.

• Any other additional column, as defined by the calibration method.

Rows in the output dataframe are solutions to the calibration problem. Rows are sorted in decreasing order (from best
to worst). Note that, depending on the calibration method, the output can contain more than one solution.

6.4 Test

The test directory contains a battery of tests for validating numerical and/or computational performance of library
components.

6.4.1 File structure

This directory is organized in subdirectories, with each subdirectory containing one or more stand-alone tests (one test
per file in the subdirectory).

Naming conventions. Subdirectories should be named as follows:

[type of test]_[main method/algorithm][_ other labels/description],

with:

• type of test assigning a category to the example. In general, categories refer to the main operation that is
being verified in the test. Possible types of tests are:

• buildTree

• calibration_historyMatching_sir

• computeDegree

• features

• sampling

Note that a test may use components from more than one module of the library. The type of test describes the
main component that is being tested. It does not list all the modules/components that are being used in the test.

• main method/algorithm describing the main method or function that is being used in the test. For exam-
ple, it can be the name of the initializer of a calibration method, or the name of a model contained in the models
module, or a sampling strategy contained in the sampling module.

• other labels/description being any other string that completes the description of the test.

Test functions. There must be exactly one test per file. The entry point of the file (i.e., the test function) is given by the
name of the file and the suffix _test. This function should not receive any parameters and it must be self-contained.
All the code relevant to a given test should be inside the corresponding test file (this requirement aids in defining tests
that are short and self-contained).

Each test must return a boolean state indicating if the test was successful or if it failed.

6.4. Test 21

phylomodels

6.4.2 phyloModels test script

The file phylomodels_test.py contains a script that executes all the tests necessary for validating the correct installa-
tion/operation of the library. Calls to any test that is considered important for library validation should be added to this
file.

6.5 Examples

Examples of configuration and use of modules can be found in the examples directory. This directory is organized
in subdirectories, with each subdirectory containing an independent (i.e, stand-alone) example. Examples aid in
understanding the use of different modules and, at the same time, they serve as templates for configuring and executing
modeling and calibration jobs.

6.5.1 Naming conventions

Example subdirectories should be named as follows:

[type of example]_[main method/algorithm][_other labels/description]

type of example Assigns a category to the example. In general, categories refer to the main operation that is being
illustrated in the example. Possible types of examples are:

• calibration

• features

• model

• network

• sampling

• visualization

Note that one example may use components from more than one module. The type of example describes the
main component that is being used. It does not list all the modules that are being used in the example.

main method/algorithm Describes the main method or function that is being used in the example. For example,
it can be the name of the initializer of a calibration method, or the name of a model contained in the models
module, or a sampling strategy contained in the sampling module.

other labels/description Any other string that completes the description of the example.

6.5.2 File structure

All the files relevant to a given example (that are not part of a module) should be located inside the corresponding
folder. The name of the main script (and notebook, if available) of an example should be the same used for naming
the example subdirectory.

22 Chapter 6. Examples

phylomodels

6.5.3 Data

Data that may be used in more than one example should be placed in the examples/data subdirectory.

6.6 API reference

6.6.1 phylomodels package

Subpackages

phylomodels.calibration package

Submodules

phylomodels.calibration.cal_parameterSweep module

phylomodels.calibration.constants module

phylomodels.calibration.init_historyMatching_base module

phylomodels.calibration.init_historyMatching_poissonGlmBasis module

phylomodels.examples package

phylomodels.features package

Subpackages

phylomodels.features.series package

Submodules

phylomodels.features.series.series module

phylomodels.features.series.series_derivative module

phylomodels.features.series.series_derivative2 module

phylomodels.features.series.series_derivative2_cauchyFit module

phylomodels.features.series.series_derivative2_gaussianFit module

phylomodels.features.series.series_derivative2_laplaceFit module

phylomodels.features.series.series_derivative_cauchyFit module

6.6. API reference 23

phylomodels

phylomodels.features.series.series_derivative_gaussianFit module

phylomodels.features.series.series_derivative_laplaceFit module

phylomodels.features.series.series_diff module

phylomodels.features.series.series_diff_L1 module

phylomodels.features.series.series_diff_L2 module

phylomodels.features.series.series_diff_Linf module

phylomodels.features.series.series_log10 module

phylomodels.features.series.series_partialSum10 module

phylomodels.features.series.series_partialSum15 module

phylomodels.features.series.series_partialSum2 module

phylomodels.features.series.series_partialSum30 module

phylomodels.features.series.series_partialSum7 module

phylomodels.features.series.series_sum module

phylomodels.features.series.series_sum_log10 module

phylomodels.features.statistics package

Submodules

phylomodels.features.statistics.fano module

phylomodels.features.statistics.mean module

phylomodels.features.statistics.qcd module

phylomodels.features.statistics.rsd module

phylomodels.features.statistics.skew module

phylomodels.features.statistics.std module

phylomodels.features.statistics.var module

24 Chapter 6. Examples

phylomodels

phylomodels.features.trees package

Subpackages

phylomodels.features.trees.helper package

Submodules

phylomodels.features.trees.helper.check_values module

phylomodels.features.trees.helper.get_LTT module

phylomodels.features.trees.helper.get_adjacency_mat module

phylomodels.features.trees.helper.get_distance_mat module

phylomodels.features.trees.helper.get_eigenvalues_adj module

phylomodels.features.trees.helper.get_eigenvalues_dist_lap module

phylomodels.features.trees.helper.get_eigenvalues_lap module

phylomodels.features.trees.helper.get_groups module

phylomodels.features.trees.helper.get_node_properties module

phylomodels.features.trees.helper.process_optional_arguements module

phylomodels.features.trees.helper.unique_node_attr module

Submodules

phylomodels.features.trees.BL_calculate_external_max module

phylomodels.features.trees.BL_calculate_external_mean module

phylomodels.features.trees.BL_calculate_external_median module

phylomodels.features.trees.BL_calculate_external_min module

phylomodels.features.trees.BL_calculate_external_std module

phylomodels.features.trees.BL_calculate_internal_max module

phylomodels.features.trees.BL_calculate_internal_mean module

6.6. API reference 25

phylomodels

phylomodels.features.trees.BL_calculate_internal_median module

phylomodels.features.trees.BL_calculate_internal_min module

phylomodels.features.trees.BL_calculate_internal_std module

phylomodels.features.trees.BL_calculate_max module

phylomodels.features.trees.BL_calculate_mean module

phylomodels.features.trees.BL_calculate_median module

phylomodels.features.trees.BL_calculate_min module

phylomodels.features.trees.BL_calculate_ratio_max module

phylomodels.features.trees.BL_calculate_ratio_mean module

phylomodels.features.trees.BL_calculate_ratio_median module

phylomodels.features.trees.BL_calculate_ratio_min module

phylomodels.features.trees.BL_calculate_ratio_std module

phylomodels.features.trees.BL_calculate_std module

phylomodels.features.trees.LTT_calculate_max_lineages module

phylomodels.features.trees.LTT_calculate_mean_b_time module

phylomodels.features.trees.LTT_calculate_mean_s_time module

phylomodels.features.trees.LTT_calculate_slope_1 module

phylomodels.features.trees.LTT_calculate_slope_2 module

phylomodels.features.trees.LTT_calculate_slope_ratio module

phylomodels.features.trees.LTT_calculate_t_max_lineages module

phylomodels.features.trees.group_calculate_max module

phylomodels.features.trees.group_calculate_mean module

phylomodels.features.trees.group_calculate_median module

26 Chapter 6. Examples

phylomodels

phylomodels.features.trees.group_calculate_min module

phylomodels.features.trees.group_calculate_mode module

phylomodels.features.trees.group_calculate_num module

phylomodels.features.trees.group_calculate_std module

phylomodels.features.trees.local_calculate_LBI_mean module

phylomodels.features.trees.local_calculate_frac_basal module

phylomodels.features.trees.mean_NN_distance module

phylomodels.features.trees.netSci_calculate_betweenness_max module

phylomodels.features.trees.netSci_calculate_closeness_max module

phylomodels.features.trees.netSci_calculate_diameter module

phylomodels.features.trees.netSci_calculate_eigen_centrality_max module

phylomodels.features.trees.netSci_calculate_mean_path module

phylomodels.features.trees.smallConfig_calculate_cherries module

phylomodels.features.trees.smallConfig_calculate_double_cherries module

phylomodels.features.trees.smallConfig_calculate_fourprong module

phylomodels.features.trees.smallConfig_calculate_pitchforks module

phylomodels.features.trees.spectral_calculate_eigen_gap module

phylomodels.features.trees.spectral_calculate_kurtosis module

phylomodels.features.trees.spectral_calculate_max_adj_eigen module

phylomodels.features.trees.spectral_calculate_max_distLap_eigen module

phylomodels.features.trees.spectral_calculate_max_lap_eigen module

phylomodels.features.trees.spectral_calculate_min_adj_eigen module

phylomodels.features.trees.spectral_calculate_min_lap_eigen module

6.6. API reference 27

phylomodels

phylomodels.features.trees.spectral_calculate_skewness module

phylomodels.features.trees.top_calculate_B1 module

phylomodels.features.trees.top_calculate_B2 module

phylomodels.features.trees.top_calculate_FurnasR module

phylomodels.features.trees.top_calculate_WD_ratio module

phylomodels.features.trees.top_calculate_colless module

phylomodels.features.trees.top_calculate_frac_imbalance module

phylomodels.features.trees.top_calculate_frac_ladder module

phylomodels.features.trees.top_calculate_max_dW module

phylomodels.features.trees.top_calculate_max_ladder module

phylomodels.features.trees.top_calculate_mean_imbalance_ratio module

phylomodels.features.trees.top_calculate_sackin module

phylomodels.features.trees.top_calculate_sackin_var module

phylomodels.features.trees.tree_height_calculate_max module

phylomodels.features.trees.tree_height_calculate_mean module

phylomodels.features.trees.tree_height_calculate_min module

Submodules

phylomodels.features.features module

phylomodels.features.inventory module

phylomodels.features.test module

phylomodels.features.testFeatures module

phylomodels.models package

Subpackages

28 Chapter 6. Examples

phylomodels

phylomodels.models.seir_taoLeap package

Submodules

phylomodels.models.seir_taoLeap.seirTaoLeap module

Submodules

phylomodels.models.distributions_gaussian module

phylomodels.models.seir_taoLeap_getIncidenceSampled module

phylomodels.models.sir_taoLeap_getIncidence module

phylomodels.models.sir_taoLeap_getIncidenceSampled module

phylomodels.models.test_distributions_gaussian module

phylomodels.models.test_sir_taoLeap_getIncidence module

phylomodels.models.test_sir_taoLeap_getIncidenceSampled module

phylomodels.network package

Submodules

phylomodels.network.phyloTree module

phylomodels.sampling package

Submodules

phylomodels.sampling.observationModel module

phylomodels.utilities package

phylomodels.visualization package

Submodules

phylomodels.visualization.parallelCoordinates module

6.7 To do

The following topic lists the functionality we plan to add to phyloModels in the future.

6.7. To do 29

phylomodels

6.7.1 Calibration algorithms

Features and summary statistics

• Include multiple correlation coefficients as statistics for the evaluation of dispersion of summary statistics.

• Integrate summary statistics for trees.

History matching

• Automatic selection of GLM basis. This can done by running a quick test that characterizes the data to fit as one
of the basis supported by History Matching (which are the basis supported by statsmodels).

• Use history matching diagnostics information for deciding if an iteration is successful or not (and make decisions
regarding the need for repeating it using a different observation or summary statistic). NOTE: This depends on
history matching reporting test information.

• Add support for using a variable number of model simulations per iteration, as well as guidelines (and functions)
for selecting them.

• Add calibration example calling a model in R.

• Relax the condition that the number of observations must match the number of outputs rendered by the sim-
ulation model. The number of observations to use for feature generation should be the minimum between the
number of observations provided as input argument and the number of outputs delivered by the simulation
model.

• Incorporate means for robustly dealing with outliers and for capturing rare events.

Parameter sweep

• Add support for additional cost metrics.

Others

• Integrate other calibration methods: ELFI, ABC

6.7.2 Development

General

• Document specifications for tests.

• Performance characterization for history matching.

30 Chapter 6. Examples

phylomodels

Features

• Update conventions for the name of outputs of summary statistics. It should be the name of the summary statistic
(i.e., feature) followed by underscore “_” and an integer number.

• Ensure parallelization for the computation of features. We should be able to take advantage of all available cores
for computing features and statistics. Parallelization should be done on each feature or statistic independently.

• How can we optimize computations so that data can be shared/reused for the computation of multiple features
or statistics? For example, dx is used in all series_derivative features.

Visualization

• Superimpose marginal distributions in parallel coordinates plots.

• Superimpose reference curve in parallel coordinates plots.

• Add support for reverse/log axis in any coordinate in parallel coordinates plots (these options are currently
supported only for the rightmost axes).

Distribution

• Package in a Docker image.

• Make library available in Artifactory.

6.7. To do 31

	Documentation
	Files
	Data structures
	Installation
	Requirements/Dependencies
	Examples
	Models
	Features
	Calibration
	Test
	Examples
	API reference
	To do

