Source code for emod_api.demographics.PreDefinedDistributions
from emod_api.demographics.PropertiesAndAttributes import IndividualAttributes
import copy
[docs]class ConstantDistribution:
"""
Wrapping this class around a Distributions disables __setattr__ and makes the wrapped objects constant.
"""
def __init__(self, distribution):
self.distribution = distribution
[docs] def to_dict(self):
"""
Calls the to_dict() method of the wrapped distribution.
"""
return self.distribution.to_dict()
[docs] def copy(self):
"""
Creates a deepcopy of the wrapped Distribution object.
"""
return copy.deepcopy(self.distribution)
def __getattr__(self, item):
return self.distribution.__dict__[item]
def __setattr__(self, key, value):
if key == "distribution": # only allow to set member 'distribution'
vars(self)["distribution"] = value
else:
raise Exception(
"The object is constant and cannot be changed. Please use copy() to make a copy of the object.")
# Mortality Distributions
Constant_Mortality = ConstantDistribution(IndividualAttributes.MortalityDistribution(num_population_axes=2,
axis_names=["gender", "age"],
axis_units=["male=0,female=1",
"years"],
axis_scale_factors=[1, 365],
population_groups=[[0, 1], [0]],
result_scale_factor=1,
result_units="daily probability "
"of dying",
result_values=[[0.5], [0.5]]))
SEAsia_Diag = ConstantDistribution(IndividualAttributes.MortalityDistribution(num_population_axes=2,
num_population_groups=[2, 1],
axis_names=["gender", "age"],
axis_units=["male=0,female=1", "years"],
axis_scale_factors=[1, 365],
population_groups=[[0, 1],
[0, 1, 5, 25, 40, 60,
80, 95]],
result_scale_factor=0.00000274,
result_units="annual deaths per 1000 "
"individuals",
result_values=[
[35, 5, 1, 2, 5, 30, 350, 1000],
[35, 5, 1, 2, 5, 30, 350, 1000]]))
# Age Distributions
AgeDistribution_Mosambique = ConstantDistribution(IndividualAttributes.AgeDistribution(
distribution_values=[0.1059, 0.2005, 0.3011, 0.4154, 0.5256, 0.6186, 0.7023, 0.7492, 0.8062, 0.8556, 0.8989, 0.9309,
0.9558, 0.9727, 0.9850, 0.9930, 1.0, 1.0],
result_scale_factor=1,
result_values=[0, 1825, 3650, 5475, 7300, 9125, 10950, 12775, 14600, 16425, 18250, 20075, 21900, 23725, 25550,
27375, 29200, 32850]))
AgeDistribution_Mozambique = AgeDistribution_Mosambique # Fix spelling AND stay backwards compatible
AgeDistribution_SEAsia = ConstantDistribution(IndividualAttributes.AgeDistribution(
distribution_values=[0,
0.05131030266354994,
0.10043221053926492,
0.1474590550263547,
0.1924801872714009,
0.23553394531326288,
0.2767982572728267,
0.3163026374086899,
0.3541221439117167,
0.39032863400649825,
0.42499084497300144,
0.45817443053902823,
0.4899427290085593,
0.5203228231617444,
0.5494404809472532,
0.5773161674455726,
0.6040027732995582,
0.6295511892763999,
0.6540099573139143,
0.6774255492073296,
0.6998423831299495,
0.7212794983576319,
0.7418258161901273,
0.7614958268507029,
0.7803269034939072,
0.7983547388766181,
0.8156135975966274,
0.8321363617839843,
0.8479544246776415,
0.8630812779943506,
0.8775794381259877,
0.8914592027768785,
0.9047469918889075,
0.9174680522677974,
0.9296465540312573,
0.9413055618865094,
0.9524672736916279,
0.9631412421412441,
0.9733716589667161,
0.9831657440381932,
0.9925420312569604,
0.9999999999999999,
0.9999999999999999,
0.9999999999999999,
0.9999999999999999,
0.9999999999999999,
0.9999999999999999,
0.9999999999999999,
0.9999999999999999,
0.9999999999999999],
result_scale_factor=1,
result_values=[0,
894,
1788,
2682,
3576,
4469,
5363,
6257,
7151,
8045,
8939,
9833,
10727,
11620,
12514,
13408,
14302,
15196,
16090,
16984,
17878,
18771,
19665,
20559,
21453,
22347,
23241,
24135,
25029,
25922,
26816,
27710,
28604,
29498,
30392,
31286,
32180,
33073,
33967,
34861,
35755,
36649,
37543,
38437,
39331,
40224,
41118,
42012,
42906,
43800]))
AgeDistribution_SSAfrica = ConstantDistribution(IndividualAttributes.AgeDistribution(
distribution_values=[0,
0.0874071047257126,
0.16737703029028825,
0.24054255502934432,
0.3074826208089575,
0.3686613109892203,
0.4246989953576121,
0.47596861687986874,
0.522875857439861,
0.5657918836833704,
0.6050561581209166,
0.6409789502300984,
0.673845189729804,
0.7038827889943505,
0.7313967340232171,
0.7565694182395838,
0.7795999267083209,
0.800670843446059,
0.8199488968312877,
0.8375866300551988,
0.8537235049479931,
0.8684713425858462,
0.8819801447631247,
0.8943395212968485,
0.9056472694733465,
0.915992766949792,
0.9254579031519203,
0.9341176809019833,
0.9420406227370048,
0.9492816775343581,
0.9559142701362873,
0.9619824759265774,
0.9675343569769829,
0.9726138439176826,
0.9772611297725079,
0.981512933676782,
0.9854029390818465,
0.9889581498026758,
0.9922146658619191,
0.9951940927775798,
0.9979199629370703,
1.0000000000000013,
1.0000000000000013,
1.0000000000000013,
1.0000000000000013,
1.0000000000000013,
1.0000000000000013,
1.0000000000000013,
1.0000000000000013,
1.0000000000000013],
result_scale_factor=1,
result_values=[0,
894,
1788,
2682,
3576,
4469,
5363,
6257,
7151,
8045,
8939,
9833,
10727,
11620,
12514,
13408,
14302,
15196,
16090,
16984,
17878,
18771,
19665,
20559,
21453,
22347,
23241,
24135,
25029,
25922,
26816,
27710,
28604,
29498,
30392,
31286,
32180,
33073,
33967,
34861,
35755,
36649,
37543,
38437,
39331,
40224,
41118,
42012,
42906,
43800]))
AgeDistribution_Americas = ConstantDistribution(IndividualAttributes.AgeDistribution(
distribution_values=[0.0,
0.05561604975889523,
0.1085504268939315,
0.15893242961061219,
0.20688512221052024,
0.25247579365254375,
0.2959175591522817,
0.33726466606783617,
0.3766181094626717,
0.41407401508472774,
0.4497238096138797,
0.4836543370003379,
0.5159488150771436,
0.5466525950728578,
0.5759094477241161,
0.6037554939431383,
0.6302586709185651,
0.6554839272822989,
0.6794928786705416,
0.7023441700189808,
0.7240935400772673,
0.744771455413333,
0.7644749339811272,
0.7832283548978808,
0.8010775258283467,
0.8180659536755108,
0.8342351489080828,
0.8496247034407376,
0.864272208087148,
0.8781982393670924,
0.8914678963323107,
0.9040976746809025,
0.916118474493211,
0.9275596580218793,
0.9384491718638799,
0.9488135402059068,
0.9586781263987578,
0.9680568209592978,
0.9769935431718086,
0.9854993553707374,
0.9935949610029462,
0.9999999999999997,
0.9999999999999997,
0.9999999999999997,
0.9999999999999997,
0.9999999999999997,
0.9999999999999997,
0.9999999999999997,
0.9999999999999997,
0.9999999999999997],
result_scale_factor=1,
result_values=[0,
894,
1788,
2682,
3576,
4469,
5363,
6257,
7151,
8045,
8939,
9833,
10727,
11620,
12514,
13408,
14302,
15196,
16090,
16984,
17878,
18771,
19665,
20559,
21453,
22347,
23241,
24135,
25029,
25922,
26816,
27710,
28604,
29498,
30392,
31286,
32180,
33073,
33967,
34861,
35755,
36649,
37543,
38437,
39331,
40224,
41118,
42012,
42906,
43800]))