Skip to content

weather

emod-api Weather module - Weather, Metadata, and WeatherNode objects along with IDREF and CLIMATE_UPDATE constants.

Metadata

Bases: object

Metadata:

  • [DateCreated]
  • [Author]
  • [OriginalDataYears]
  • [StartDayOfYear]
  • [DataProvenance]
  • IdReference
  • NodeCount
  • DatavalueCount
  • UpdateResolution
  • NodeOffsets
Source code in emod_api/weather/weather.py
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
class Metadata(object):

    """
    Metadata:

    * [DateCreated]
    * [Author]
    * [OriginalDataYears]
    * [StartDayOfYear]
    * [DataProvenance]
    * IdReference
    * NodeCount
    * DatavalueCount
    * UpdateResolution
    * NodeOffsets
    """

    def __init__(
        self,
        node_ids: List[int],
        datavalue_count: int,
        author: str = None,
        created: datetime = None,
        frequency: str = None,
        provenance: str = None,
        reference: str = None,
    ):

        assert int(datavalue_count) > 0, "datavalue_count must be > 0"
        self._data_count = int(datavalue_count)
        self._author = f"{author}" if author else getpass.getuser()
        self._creation = (
            created if created and isinstance(created, datetime) else datetime.now()
        )
        self._id_reference = f"{reference}" if reference else IDREF_LEGACY
        self._provenance = f"{provenance}" if provenance else "unknown"
        self._update_frequency = f"{frequency}" if frequency else CLIMATE_UPDATE_DAY

        assert _is_iterable(node_ids), "node_ids must be iterable"
        concrete = list(node_ids)  # if node_ids is a generator, make a concrete list
        assert len(concrete) > 0, "node_ids must not be empty"
        assert all(
            map(lambda i: isinstance(i, int), concrete)
        ), "node_ids must be integers"
        assert len(set(concrete)) == len(concrete), "node_ids must be unique"
        sorted_ids = sorted(concrete)
        self._nodes = {
            node_id: datavalue_count * sorted_ids.index(node_id) * 4
            for node_id in sorted_ids
        }

        return

    @property
    def author(self) -> str:
        """Author of this file."""
        return self._author

    @property
    def creation_date(self) -> datetime:
        """Creation date of this file."""
        return self._creation

    @property
    def datavalue_count(self) -> int:
        """Number of data values in each timeseries, should be > 0."""
        return self._data_count

    @property
    def id_reference(self) -> str:
        """
        'Schema' for node IDs. Commonly `Legacy`, `Gridded world grump2.5arcmin`, and `Gridded world grump30arcsec`.

        `Legacy` usually indicates a 0 or 1 based scheme with increasing ID numbers.

        `Gridded world grump2.5arcmin` and `Gridded world grump30arcsec` encode latitude and longitude values in the node ID with the following formula::

            latitude  = (((nodeid - 1) & 0xFFFF) * resolution) -  90
            longitude = ((nodeid >> 16)          * resolution) - 180
            # nodeid = 90967271 @ 2.5 arcmin resolution
            # longitude = -122.1667, latitude = 47.5833
        """
        return self._id_reference

    @property
    def node_count(self) -> int:
        return len(self.nodes)

    @property
    def node_ids(self) -> List[int]:
        return sorted(self.nodes.keys())

    @property
    def provenance(self) -> str:
        return self._provenance

    @property
    def update_resolution(self) -> str:
        return self._update_frequency

    @property
    def nodes(self) -> Dict[int, int]:
        """WeatherNodes offsets keyed by node id."""
        return self._nodes

    def write_file(self, filename: str) -> None:

        metadata = dict(
            DateCreated=f"{self.creation_date:%a %B %d %Y %H:%M:%S}",
            Author=self.author,
            DataProvenance=self.provenance,
            IdReference=self.id_reference,
            NodeCount=len(self.nodes),
            DatavalueCount=self.datavalue_count,
            UpdateResolution=self.update_resolution,
        )

        node_offsets = reduce(
            lambda s, n: s + f"{n:08X}{self.nodes[n]:08X}", self.node_ids, ""
        )

        jason = dict(Metadata=metadata, NodeOffsets=node_offsets)

        with open(filename, "wt") as file:
            json.dump(jason, file, indent=2, separators=(",", ": "))

        return

    @classmethod
    def from_file(cls, filename: str):
        """
        Read weather metadata file.
        Metadata' and 'NodeOffsets' keys required.
        DatavalueCount', 'UpdateResolution', and 'IdReference' required in 'Metadata'.
        """
        with open(filename, "rb") as file:
            jason = json.load(file)

        meta = jason["Metadata"]
        offsets = jason["NodeOffsets"]
        node_ids = sorted(
            [int(offsets[(i * 16):(i * 16 + 8)], 16) for i in range(len(offsets) // 16)]
        )

        metadata = Metadata(
            node_ids,
            meta["DatavalueCount"],
            author=meta["Author"] if "Author" in meta else None,
            created=meta["DateCreated"] if "DateCreated" in meta else None,
            frequency=meta["UpdateResolution"],
            provenance=meta["DataProvenance"] if "DataProvenance" in meta else None,
            reference=meta["IdReference"],
        )

        return metadata

author property

Author of this file.

creation_date property

Creation date of this file.

datavalue_count property

Number of data values in each timeseries, should be > 0.

id_reference property

'Schema' for node IDs. Commonly Legacy, Gridded world grump2.5arcmin, and Gridded world grump30arcsec.

Legacy usually indicates a 0 or 1 based scheme with increasing ID numbers.

Gridded world grump2.5arcmin and Gridded world grump30arcsec encode latitude and longitude values in the node ID with the following formula::

1
2
3
4
latitude  = (((nodeid - 1) & 0xFFFF) * resolution) -  90
longitude = ((nodeid >> 16)          * resolution) - 180
# nodeid = 90967271 @ 2.5 arcmin resolution
# longitude = -122.1667, latitude = 47.5833

nodes property

WeatherNodes offsets keyed by node id.

from_file(filename) classmethod

Read weather metadata file. Metadata' and 'NodeOffsets' keys required. DatavalueCount', 'UpdateResolution', and 'IdReference' required in 'Metadata'.

Source code in emod_api/weather/weather.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
@classmethod
def from_file(cls, filename: str):
    """
    Read weather metadata file.
    Metadata' and 'NodeOffsets' keys required.
    DatavalueCount', 'UpdateResolution', and 'IdReference' required in 'Metadata'.
    """
    with open(filename, "rb") as file:
        jason = json.load(file)

    meta = jason["Metadata"]
    offsets = jason["NodeOffsets"]
    node_ids = sorted(
        [int(offsets[(i * 16):(i * 16 + 8)], 16) for i in range(len(offsets) // 16)]
    )

    metadata = Metadata(
        node_ids,
        meta["DatavalueCount"],
        author=meta["Author"] if "Author" in meta else None,
        created=meta["DateCreated"] if "DateCreated" in meta else None,
        frequency=meta["UpdateResolution"],
        provenance=meta["DataProvenance"] if "DataProvenance" in meta else None,
        reference=meta["IdReference"],
    )

    return metadata

Weather

Bases: object

Source code in emod_api/weather/weather.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
class Weather(object):
    def __init__(
        self,
        filename: str = None,
        node_ids: List[int] = None,
        datavalue_count: int = None,
        author: str = None,
        created: datetime = None,
        frequency: str = None,
        provenance: str = None,
        reference: str = None,
        data: np.array = None,
    ):

        if filename and isinstance(filename, str):
            self._from_file(filename)
        else:
            # create "empty" Weather object
            assert _is_iterable(node_ids), "node_ids must be provided and be iterable"
            assert _isinteger(datavalue_count), "datavalue_count must be provided"
            assert datavalue_count > 0, "datavalue_count must be >= 1"

            self._metadata = Metadata(
                node_ids,
                datavalue_count,
                author,
                created,
                frequency,
                provenance,
                reference,
            )
            node_ids = self._metadata.node_ids
            self._data = (
                data
                if data is not None
                else np.zeros(
                    (len(node_ids), self._metadata.datavalue_count), dtype=np.float32
                )
            )
            self._nodes_and_map()

        return

    def _nodes_and_map(self):
        node_ids = self._metadata.node_ids
        self._node_id_to_index_map = {node_ids[n]: n for n in range(len(node_ids))}
        self._nodes = {
            node_id: WeatherNode(
                node_id, self._data[self._node_id_to_index_map[node_id], :]
            )
            for node_id in node_ids
        }
        return

    @property
    def data(self) -> np.array:
        """Raw data as numpy array[node index, time step]."""
        return self._data

    @property
    def metadata(self) -> Metadata:
        return self._metadata

    # begin pass-through

    @property
    def author(self) -> str:
        return self._metadata.author

    @property
    def creation_date(self) -> datetime:
        return self._metadata.creation_date

    @property
    def datavalue_count(self) -> int:
        """>= 1"""
        return self._metadata.datavalue_count

    @property
    def id_reference(self) -> str:
        return self._metadata.id_reference

    @property
    def node_count(self) -> int:
        """>= 1"""
        return self._metadata.node_count

    @property
    def node_ids(self) -> List[int]:
        return self._metadata.node_ids

    @property
    def provenance(self) -> str:
        return self._metadata.provenance

    @property
    def update_resolution(self) -> str:
        return self._metadata.update_resolution

    # end pass-through

    @property
    def nodes(self) -> Dict[int, WeatherNode]:
        """WeatherNodes indexed by node id."""
        return self._nodes

    # retrieve node by node id
    def __getitem__(self, item: int):
        return self._nodes[item]

    def write_file(self, filename: str) -> None:
        """Writes data to filename and metadata to filename.json."""
        self.metadata.write_file(filename + ".json")

        with open(filename, "wb") as file:
            self._data.tofile(file)

        return

    def _from_file(self, filename: str):
        """Reads metadata from filename.json and data from filename."""
        self._metadata = Metadata.from_file(filename + ".json")
        data = np.fromfile(filename, dtype=np.float32)
        expected = self._metadata.node_count * self._metadata.datavalue_count
        assert (
            len(data) == expected
        ), f"length of data ({len(data)}) != #nodes * #values ({expected})"
        self._data = data.reshape(
            self._metadata.node_count, self._metadata.datavalue_count
        )
        self._nodes_and_map()

        return

    @classmethod
    def from_csv(
        cls,
        filename: str,
        var_column: str = "airtemp",
        id_column: str = "node_id",
        step_column: str = "step",
        author: str = None,
        provenance: str = None,
    ):
        """
        Create weather from CSV file with specified variable column, node id column, and time step column.

        Note:
            * Column order in the CSV file is not significant, but columns names must match what is passed to this function.
            * Because a CSV might hold air temperature (may be negative and well outside 0-1 values), relative humidity (must _not_ be negative, must be in the interval [0-1]), or rainfall (must _not_ be negative, likely > 1), this function does not validate incoming data.
        """
        Entry = namedtuple("Entry", ["id", "step", "value"])

        with open(filename) as csv_file:
            reader = csv.DictReader(csv_file)
            entries = [
                Entry(
                    int(row[id_column]), int(row[step_column]), float(row[var_column])
                )
                for row in reader
            ]

        node_ids = set([entry.id for entry in entries])
        steps_list = [
            sorted([entry.step for entry in entries if entry.id == node_id])
            for node_id in sorted(node_ids)
        ]

        for i in range(1, len(steps_list)):
            test = len(steps_list[i])
            expected = len(steps_list[0])
            assert (
                test == expected
            ), f"number of data values for nodes is not consistent ({len(steps_list[i]) != {len(steps_list[0])}})"
            test = steps_list[i]
            expected = steps_list[0]
            assert (
                test == expected
            ), f"time steps for node {sorted(node_ids)[i]} != time steps for node {sorted(node_ids)[0]}"

        steps = sorted(steps_list[0])
        expected = [i for i in range(1, len(steps) + 1)]
        assert steps == expected, f"time steps do not cover all values 1...{len(steps)}"

        data_count = len(steps)

        w = Weather(
            node_ids=node_ids,
            datavalue_count=data_count,
            author=author,
            provenance=provenance,
        )
        for node_id in node_ids:

            sorted_entries_for_node = sorted(
                [entry for entry in entries if entry.id == node_id],
                key=lambda e: e.step,
            )
            data_for_node = [entry.value for entry in sorted_entries_for_node]

            w.nodes[node_id][:] = data_for_node

        return w

data property

Raw data as numpy array[node index, time step].

datavalue_count property

= 1

node_count property

= 1

nodes property

WeatherNodes indexed by node id.

from_csv(filename, var_column='airtemp', id_column='node_id', step_column='step', author=None, provenance=None) classmethod

Create weather from CSV file with specified variable column, node id column, and time step column.

Note
  • Column order in the CSV file is not significant, but columns names must match what is passed to this function.
  • Because a CSV might hold air temperature (may be negative and well outside 0-1 values), relative humidity (must not be negative, must be in the interval [0-1]), or rainfall (must not be negative, likely > 1), this function does not validate incoming data.
Source code in emod_api/weather/weather.py
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
@classmethod
def from_csv(
    cls,
    filename: str,
    var_column: str = "airtemp",
    id_column: str = "node_id",
    step_column: str = "step",
    author: str = None,
    provenance: str = None,
):
    """
    Create weather from CSV file with specified variable column, node id column, and time step column.

    Note:
        * Column order in the CSV file is not significant, but columns names must match what is passed to this function.
        * Because a CSV might hold air temperature (may be negative and well outside 0-1 values), relative humidity (must _not_ be negative, must be in the interval [0-1]), or rainfall (must _not_ be negative, likely > 1), this function does not validate incoming data.
    """
    Entry = namedtuple("Entry", ["id", "step", "value"])

    with open(filename) as csv_file:
        reader = csv.DictReader(csv_file)
        entries = [
            Entry(
                int(row[id_column]), int(row[step_column]), float(row[var_column])
            )
            for row in reader
        ]

    node_ids = set([entry.id for entry in entries])
    steps_list = [
        sorted([entry.step for entry in entries if entry.id == node_id])
        for node_id in sorted(node_ids)
    ]

    for i in range(1, len(steps_list)):
        test = len(steps_list[i])
        expected = len(steps_list[0])
        assert (
            test == expected
        ), f"number of data values for nodes is not consistent ({len(steps_list[i]) != {len(steps_list[0])}})"
        test = steps_list[i]
        expected = steps_list[0]
        assert (
            test == expected
        ), f"time steps for node {sorted(node_ids)[i]} != time steps for node {sorted(node_ids)[0]}"

    steps = sorted(steps_list[0])
    expected = [i for i in range(1, len(steps) + 1)]
    assert steps == expected, f"time steps do not cover all values 1...{len(steps)}"

    data_count = len(steps)

    w = Weather(
        node_ids=node_ids,
        datavalue_count=data_count,
        author=author,
        provenance=provenance,
    )
    for node_id in node_ids:

        sorted_entries_for_node = sorted(
            [entry for entry in entries if entry.id == node_id],
            key=lambda e: e.step,
        )
        data_for_node = [entry.value for entry in sorted_entries_for_node]

        w.nodes[node_id][:] = data_for_node

    return w

write_file(filename)

Writes data to filename and metadata to filename.json.

Source code in emod_api/weather/weather.py
337
338
339
340
341
342
343
344
def write_file(self, filename: str) -> None:
    """Writes data to filename and metadata to filename.json."""
    self.metadata.write_file(filename + ".json")

    with open(filename, "wb") as file:
        self._data.tofile(file)

    return

WeatherNode

Bases: object

Represents information for a single node: ID and timeseries data.

Source code in emod_api/weather/weather.py
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class WeatherNode(object):
    """Represents information for a single node: ID and timeseries data."""

    def __init__(self, node_id: int, data):

        self._id = node_id
        self._data = data

        return

    @property
    def id(self) -> int:
        """Node ID"""
        return self._id

    @property
    def data(self):
        """Time series data for this node."""
        return self._data

    # index into node by time step
    def __getitem__(self, item: int) -> float:
        return self._data[item]

    def __setitem__(self, key: int, value: float) -> None:
        self._data[key] = value
        return

data property

Time series data for this node.

id property

Node ID