Source code for hpvsim.plotting

'''
Core plotting functions for simulations, multisims, and scenarios.
'''

import numpy as np
import pylab as pl
import sciris as sc
import pandas as pd
from . import misc as hpm
from . import defaults as hpd
from .settings import options as hpo


__all__ = ['plot_sim', 'plot_scens', 'plot_scen_age_results', 'plot_result', 'plot_people']


#%% Plotting helper functions

def handle_args(fig_args=None, plot_args=None, scatter_args=None, axis_args=None, fill_args=None,
                bar_args=None, legend_args=None, date_args=None, show_args=None, style_args=None, contour_args=None, **kwargs):
    ''' Handle input arguments -- merge user input with defaults; see sim.plot for documentation '''

    # Set defaults
    defaults = sc.objdict()
    defaults.fig        = sc.objdict(figsize=(10, 8), num=None)
    defaults.plot       = sc.objdict(lw=1.5, alpha= 0.7)
    defaults.scatter    = sc.objdict(s=20, marker='s', alpha=0.7, zorder=1.75, datastride=1) # NB: 1.75 is above grid lines but below plots
    defaults.axis       = sc.objdict(left=0.10, bottom=0.08, right=0.95, top=0.95, wspace=0.30, hspace=0.30)
    defaults.fill       = sc.objdict(alpha=0.2)
    defaults.bar        = sc.objdict(width=0.15)
    defaults.contours   = sc.objdict(levels=7, linewidths=0.5, colors='k')
    defaults.legend     = sc.objdict(loc='best', frameon=False)
    defaults.date       = sc.objdict(as_dates=True, dateformat=None, rotation=None, start=None, end=None)
    defaults.show       = sc.objdict(data=True, ticks=True, interventions=True, legend=True, outer=False, tight=True, maximize=False)
    defaults.style      = sc.objdict(style=None, dpi=None, font=None, fontsize=None, grid=None, facecolor=None) # Use HPVsim global defaults

    # Handle directly supplied kwargs
    for dkey,default in defaults.items():
        keys = list(kwargs.keys())
        for kw in keys:
            if kw in default.keys():
                default[kw] = kwargs.pop(kw)

    # Handle what to show
    show_keys = ['data', 'ticks', 'interventions', 'legend']
    if show_args in [True, False]: # Handle all on or all off
        show_bool = show_args
        show_args = dict()
        for k in show_keys:
            show_args[k] = show_bool

    # Merge arguments together
    args = sc.objdict()
    args.fig        = sc.mergedicts(defaults.fig,       fig_args)
    args.plot       = sc.mergedicts(defaults.plot,      plot_args)
    args.scatter    = sc.mergedicts(defaults.scatter,   scatter_args)
    args.axis       = sc.mergedicts(defaults.axis,      axis_args)
    args.fill       = sc.mergedicts(defaults.fill,      fill_args)
    args.bar        = sc.mergedicts(defaults.bar,       bar_args)
    args.contours   = sc.mergedicts(defaults.contours, contour_args)
    args.legend     = sc.mergedicts(defaults.legend,    legend_args)
    args.date       = sc.mergedicts(defaults.date,      date_args)
    args.show       = sc.mergedicts(defaults.show,      show_args)
    args.style      = sc.mergedicts(defaults.style,     style_args)

    # Handle potential rcParams keys
    keys = list(kwargs.keys())
    for key in keys:
        if key in pl.rcParams:
            args.style[key] = kwargs.pop(key)

    # If unused keyword arguments remain, parse or raise an error
    if len(kwargs):

        # Everything remaining is not found
        notfound = sc.strjoin(kwargs.keys())
        valid = sc.strjoin(sorted(set([k for d in defaults.values() for k in d.keys()]))) # Remove duplicates and order
        errormsg = f'The following keywords could not be processed:\n{notfound}\n\n'
        errormsg += f'Valid keywords are:\n{valid}\n\n'
        errormsg += 'For more precise plotting control, use fig_args, plot_args, etc.'
        raise sc.KeyNotFoundError(errormsg)

    # Handle what to show
    show_keys = ['data', 'ticks', 'interventions', 'legend']
    if show_args in [True, False]: # Handle all on or all off
        for k in show_keys:
            args.show[k] = show_args

    return args


def handle_show(do_show):
    ''' Helper function to handle the slightly complex logic of show -- not for users '''
    backend = pl.get_backend()
    if do_show is None:  # If not supplied, reset to global value
        do_show = hpo.show
    if backend == 'agg': # Cannot show plots for a non-interactive backend
        do_show = False
    if do_show: # Now check whether to show, and atually do it
        pl.show()
    return do_show


def handle_show_return(do_show=None, fig=None, figs=None):
    ''' Helper function to handle both show and what to return -- a nothing if Jupyter, else a figure '''

    figlist = sc.mergelists(fig, figs) # Usually just one figure, but here for completeness

    # Show the figure, or close it
    do_show = handle_show(do_show)
    if hpo.close and not do_show:
        for f in figlist:
            pl.close(f)

    # Return the figure or figures unless we're in Jupyter
    if not hpo.returnfig:
        return
    else:
        if figs is not None:
            return figlist
        else:
            return fig


def handle_to_plot(kind, to_plot, n_cols, sim, check_ready=True):
    ''' Handle which quantities to plot '''

    # Allow default kind to be overwritten by to_plot -- used by msim.plot()
    if isinstance(to_plot, tuple):
        kind, to_plot = to_plot # Split the tuple

    # Check that results are ready
    if check_ready and not sim.results_ready:
        errormsg = 'Cannot plot since results are not ready yet -- did you run the sim?'
        raise RuntimeError(errormsg)

    # Define allowable choices for plotting - default plot type depends on result type
    allkeys = sim.result_keys('all')
    time_series_keys = sim.result_keys('total')+sim.result_keys('genotype')+sim.result_keys('sex')+sim.result_keys('type_dist')
    age_dist_keys = sim.result_keys('age')
    type_dist_keys = ['type_dist']
    valid_keys = allkeys+type_dist_keys
    def check_plot_type(which):
        if which in time_series_keys: return 'time_series'
        elif which in age_dist_keys: return 'age_dist'
        elif which in type_dist_keys: return 'type_dist'
        else:
            raise ValueError(f'Plot type of {which} not understood.')

    # analyzer_keys = [a.label for a in sim.get_analyzers()] # Defaults = whatever analyzer.plot() gives
    n_extra_plots = 0 # Keep track of the number of extra plots from analyzers

    # If to_plot is a single valid key, turn it into a list
    if to_plot in valid_keys: to_plot = sc.tolist(to_plot)
    if isinstance(to_plot, hpd.plot_args): to_plot = sc.tolist(to_plot)

    # If not specified or specified as another string, load defaults
    if to_plot is None or isinstance(to_plot, str):
        to_plot = hpd.get_default_plots(which=to_plot, kind=kind, sim=sim)

    # If it's a dictionary, translate it to a list but store the names
    names = None
    if isinstance(to_plot, dict):
        to_plot_orig = to_plot # Hold onto original
        names = [k for k in to_plot.keys()]
        to_plot = [k for k in to_plot.values()]

    # Validate list
    if isinstance(to_plot, list):
        to_plot_orig = to_plot[:] # Hold onto original for the moment
        to_plot = sc.autolist()
        invalid = sc.autolist()

        # Loop over items in list and validate them
        for rn,reskey in enumerate(to_plot_orig):

            # If it's a string, we construct default plot args by checking what kind of result it is
            if isinstance(reskey, str):
                if reskey in valid_keys:
                    if names is not None: name = names[rn]
                    else:
                        if reskey in allkeys:
                            name = sim.results[reskey].name
                        elif reskey == 'type_dist':
                            name = 'HPV type distribution'
                    if reskey in time_series_keys:
                        to_plot += hpd.plot_args(reskey, name=name, plot_type='time_series')
                    elif reskey in age_dist_keys:
                        to_plot += hpd.plot_args(reskey, name=name, plot_type='age_dist', year=sim.results['year'][-1])
                    elif reskey in type_dist_keys:
                        to_plot += hpd.plot_args(reskey, name=name, plot_type='type_dist', year=sim.results['year'][-1])
                else:
                    invalid += reskey

            # If it's plot args, we validate the years and set defaults
            elif isinstance(reskey, hpd.plot_args):
                if reskey.year == 'last': reskey.year = sim.results['year'][-1]
                if reskey.plot_type is None: # Add sensible defaults if not supplied
                    if reskey.keys[0] in age_dist_keys:
                        reskey.plot_type = 'age_dist'
                    elif reskey.keys[0] in type_dist_keys:
                        reskey.plot_type = 'type_dist'
                to_plot += reskey

            # If it's a list, we ned to choose a single plot type
            elif isinstance(reskey, list):
                if names is not None: name = names[rn]
                else: name = sim.results[reskey[0]].name # Use the name of the first result
                plot_types = [check_plot_type(rkey) for rkey in reskey]
                if 'time_series' in plot_types: # If no other info is provided, assume we want to plot them all as time series
                    plot_type = 'time_series'
                    year=None
                elif 'age_dist' in plot_types:
                    plot_type = 'age_dist'
                    year = sim.results['year'][-1]
                else:
                    plot_type = 'type_dist'
                    year = sim.results['year'][-1]
                to_plot += hpd.plot_args(reskey, name=name, plot_type=plot_type, year=year)

        # Raise an error if there are any invalid keys
        if len(invalid):
            errormsg = f'The following key(s) are invalid:\n{sc.strjoin(invalid)}\n\nValid keys are:\n{sc.strjoin(valid_keys)}.'
            raise sc.KeyNotFoundError(errormsg)

    # Get total number of plots and calculate rows and columns
    n_plots = len(to_plot) + n_extra_plots
    if n_cols is None:
        max_rows = 5 # Assumption -- if desired, the user can override this by setting n_cols manually
        n_cols = int((n_plots-1)//max_rows + 1) # This gives 1 column for 1-4, 2 for 5-8, etc.
    n_rows,n_cols = sc.get_rows_cols(n_plots, ncols=n_cols) # Inconsistent naming due to HPVsim/Matplotlib conventions

    return to_plot, n_cols, n_rows


def create_figs(args, sep_figs, fig=None, ax=None):
    '''
    Create the figures and set overall figure properties. If a figure is supplied,
    reset the axes labels for automatic use by other plotting functions (i.e. ax1, ax2, etc.)
    '''
    if sep_figs:
        fig = None
        figs = []
    else:
        if fig is None:
            if ax is None:
                fig = pl.figure(**args.fig) # Create the figure if none is supplied
            else:
                fig = ax.figure
        else:
            for i,fax in enumerate(fig.axes):
                fax.set_label(f'ax{i+1}')
        figs = None
    pl.subplots_adjust(**args.axis)
    return fig, figs


def create_subplots(figs, fig, shareax, n_rows, n_cols, pnum, fig_args, sep_figs, log_scale, title=None):
    ''' Create subplots and set logarithmic scale '''

    # Try to find axes by label, if they've already been defined -- this is to avoid the deprecation warning of reusing axes
    label = f'ax{pnum+1}'
    ax = None
    try:
        for fig_ax in fig.axes:
            if fig_ax.get_label() == label:
                ax = fig_ax
                break
    except:
        pass

    # Handle separate figs
    if sep_figs:
        figs.append(pl.figure(**fig_args))
        if ax is None:
            ax = pl.subplot(111, label=label)
    else:
        if ax is None:
            ax = pl.subplot(n_rows, n_cols, pnum+1, sharex=shareax, label=label)

    # Handle log scale
    if log_scale:
        if isinstance(log_scale, list):
            if title in log_scale:
                ax.set_yscale('log')
        else:
            ax.set_yscale('log')

    return ax


def plot_data(sim, ax, key, scatter_args, color=None):
    ''' Add data to the plot '''
    if sim.data is not None and key in sim.data and len(sim.data[key]):
        if color is None:
            color = sim.results[key].color
        datastride = scatter_args.pop('datastride', 1) # Temporarily pop so other arguments pass correctly to ax.scatter()
        x = np.array(sim.data.index)[::datastride]
        y = np.array(sim.data[key])[::datastride]
        ax.scatter(x, y, c=[color], label='Data', **scatter_args)
        scatter_args['datastride'] = datastride # Restore
    return


def plot_interventions(sim, ax):
    ''' Add interventions to the plot '''
    for intervention in sim['interventions']:
        if hasattr(intervention, 'plot_intervention'): # Don't plot e.g. functions
            intervention.plot_intervention(sim, ax)
    return


def title_grid_legend(ax, title, grid, commaticks, setylim, legend_args, show_args, show_legend=True):
    ''' Plot styling -- set the plot title, add a legend, and optionally add gridlines'''

    # Handle show_legend being in the legend args, since in some cases this is the only way it can get passed
    if 'show_legend' in legend_args:
        show_legend = legend_args.pop('show_legend')
        popped = True
    else:
        popped = False

    # Show the legend
    if show_legend and show_args['legend']: # It's pretty ugly, but there are multiple ways of controlling whether the legend shows

        # Remove duplicate entries
        handles, labels = ax.get_legend_handles_labels()
        unique_inds = np.sort(np.unique(labels, return_index=True)[1])
        handles = [handles[u] for u in unique_inds]
        labels  = [labels[u]  for u in unique_inds]

        # Actually make legend
        ax.legend(handles=handles, labels=labels, **legend_args)

    # If we removed it from the legend_args dict, put it back now
    if popped:
        legend_args['show_legend'] = show_legend

    # Set the title, gridlines, and color
    ax.set_title(title)

    # Set the y axis style
    if setylim and ax.yaxis.get_scale() != 'log':
        ax.set_ylim(bottom=0)
    if commaticks:
        ylims = ax.get_ylim()
        if ylims[1] >= 1000:
            sc.commaticks(ax=ax)

    # Optionally remove x-axis labels except on bottom plots -- don't use ax.label_outer() since we need to keep the y-labels
    if show_args['outer']:
        lastrow = ax.get_subplotspec().is_last_row()
        if not lastrow:
            for label in ax.get_xticklabels(which="both"):
                label.set_visible(False)
            ax.set_xlabel('')

    return



def tidy_up(fig, figs=None, do_save=False, fig_path=None, do_show=False, args=None):
    ''' Handle saving, figure showing, and what value to return '''

    figlist = sc.mergelists(fig, figs) # Usually just one figure, but here for completeness

    # Optionally maximize -- does not work on all systems
    if args is not None and hasattr(args, 'show') and args.show['maximize']:
        for f in figlist:
            sc.maximize(fig=f)
        pl.pause(0.01) # Force refresh

    # Use tight layout for all figures
    if args is not None and hasattr(args, 'show') and args.show['tight']:
        for f in figlist:
            sc.figlayout(fig=f)

    # Handle saving
    if do_save:
        if isinstance(fig_path, str): # No figpath provided - see whether do_save is a figpath
            fig_path = sc.makefilepath(fig_path) # Ensure it's valid, including creating the folder
        hpm.savefig(fig=figlist, filename=fig_path) # Save the figure

    return handle_show_return(do_show, fig=fig, figs=figs)


def set_line_options(input_args, reskey, resnum, default):
    '''From the supplied line argument, usually a color or label, decide what to use '''
    if input_args is not None:
        if isinstance(input_args, dict): # If it's a dict, pull out this value
            output = input_args[reskey]
        elif isinstance(input_args, list): # If it's a list, ditto
            output = input_args[resnum]
        else: # Otherwise, assume it's the same value for all
            output = input_args
    else:
        output = default # Default value
    return output



#%% Individual plotting functions to create particular plots
def plot_time_series(ax, sim, reskey, resnum, args, colors=None, labels=None, plot_burnin=False):
    ''' Plot time series data, i.e. the usual contents of sim.results '''

    # Initialize some variables
    bi = 0 if plot_burnin else int(sim['burnin'])
    total_keys = sim.result_keys('total')
    sex_keys = sim.result_keys('sex')
    genotype_keys = sim.result_keys('genotype')
    res_t = sim.results['year'][bi:]
    res = sim.results[reskey]
    ax.set_xlabel('Year')
    ax.set_ylabel('Value')

    # The exact plotting call depends on what kind of core result key we're dealing with
    # Simplest case: it's a total result, i.e. not disagreggated by genotype or sex
    if reskey in total_keys:
        color = set_line_options(colors, reskey, resnum, res.color)  # Choose the color
        label = set_line_options(labels, reskey, resnum, res.name)  # Choose the label
        ax.plot(res_t, res.values[bi:], label=label, **args.plot, c=color)  # Plot result

    elif reskey in sex_keys:
        n_sexes = 2
        sex_colors = ['#4679A2', '#A24679']
        sex_labels = ['males', 'females']
        for sex in range(n_sexes):
            # Colors and labels
            v_color = sex_colors[sex]
            v_label = sex_labels[sex]  # TODO this should also come from the sim
            color = set_line_options(colors, reskey, resnum, v_color)  # Choose the color
            label = set_line_options(labels, reskey, resnum, res.name)  # Choose the label
            if label:   label += f' - {v_label}'
            else:       label = v_label
            ax.plot(res_t, res.values[sex, bi:], label=label, **args.plot, c=color)  # Plot result

    elif reskey in genotype_keys:
        ng = sim['n_genotypes']
        g_colors = sc.gridcolors(ng)
        for genotype in range(ng):
            # Colors and labels
            g_color = g_colors[genotype]
            geno_obj = sim['genotypes'][genotype]
            if sc.isnumber(geno_obj):  # TODO: figure out why this is sometimes an int and sometimes an obj
                v_label = str(geno_obj)
            elif sc.isstring(geno_obj):
                v_label = geno_obj
            else:
                v_label = geno_obj.label
            color = set_line_options(colors, reskey, resnum, g_color)  # Choose the color
            label = set_line_options(labels, reskey, resnum, res.name)  # Choose the label
            if label:
                label += f' - {v_label}'
            else:
                label = v_label
            ax.plot(res_t, res.values[genotype, bi:], label=label, **args.plot, c=color)  # Plot result

    else:
        raise ValueError(f'Result {reskey} not understood.')

    return ax, color


def plot_type_bars(sim, ax, date, args):
    '''
    Plot HPV types by cytology
    '''

    idx = sc.findinds(sim.res_yearvec, date)[0]
    labels = sc.autolist()
    resdict = sc.objdict()
    for rkey in sim.result_keys('type_dist'):
        labels += sim.results[rkey].name
        resdict[rkey] = sim.results[rkey][:,idx]
    g_labels = sim['genotypes']

    # Grouped bar plot with n_groups bars (one for each state) and ng bars per group
    n_bars_per_group = sim['n_genotypes']
    n_groups = len(resdict)
    x = np.arange(n_groups)
    width = args.bar.width

    # Set position of bar on x axis
    xpositions = [x]
    for group_no in range(1, n_bars_per_group):
        xpositions.append([xi + width for xi in xpositions[-1]])

    # Plot bars
    for bar_no in range(n_bars_per_group):
        ydata = [resdict[k][bar_no] for k in range(n_groups)]  # Have to rearrange
        ax.bar(xpositions[bar_no], ydata, **args.bar, label=g_labels[bar_no])

    # Add xticks on the middle of the group bars
    ax.set_xticks([r + width for r in range(len(x))], labels)
    ax.set_xlabel('Health state')
    ax.set_ylabel('Value')
    
    return ax


def plot_age_dist(sim, ax, reskey, date, args):
    '''
    Function to plot a single age result for a single date. Requires an axis as
    input and will generally be called by a helper function rather than directly.
    '''
    idx = sc.findinds(sim.res_yearvec, date)[0]
    res = sim.results[reskey]
    label = res.name.replace('by age', '')
    x = sim['age_bin_edges'][:-1]
    ax.plot(x, res.values[:,idx], color=res.color, **args.plot, label=label)
    ax.set_xlabel('Age')
    ax.set_ylabel('Value')
    return ax



#%% Core plotting functions that unite the individual plotting functions to create figures for sims, scenarios, multisims, etc

[docs]def plot_sim(to_plot=None, sim=None, fig=None, ax=None, do_save=None, fig_path=None, fig_args=None, plot_args=None, scatter_args=None, axis_args=None, fill_args=None, legend_args=None, date_args=None, show_args=None, style_args=None, n_cols=None, grid=True, commaticks=True, setylim=True, log_scale=False, colors=None, labels=None, do_show=None, sep_figs=False, plot_burnin=False, **kwargs): ''' Plot the results of a single simulation -- see Sim.plot() for documentation ''' # Handle inputs args = handle_args(fig_args=fig_args, plot_args=plot_args, scatter_args=scatter_args, axis_args=axis_args, fill_args=fill_args, legend_args=legend_args, show_args=show_args, date_args=date_args, style_args=style_args, **kwargs) to_plot, n_cols, n_rows = handle_to_plot('sim', to_plot, n_cols, sim) # Do the plotting with hpo.with_style(args.style): # Create the figures fig, figs = create_figs(args, sep_figs, fig, ax) # Determine whether to share x axis do_sharex = False plot_types = [tp.plot_type for tp in to_plot] if len(set(plot_types))==1: do_sharex = True # Iterate through to_plot to figure out what to plot & how to plot it for pnum,plot_arg in enumerate(to_plot): sharex = ax if do_sharex else None title = plot_arg.name plot_type = plot_arg.plot_type ax = create_subplots(figs, fig, sharex, n_rows, n_cols, pnum, args.fig, sep_figs, log_scale, title) if plot_type == 'time_series': for resnum,reskey in enumerate(plot_arg.keys): ax, color = plot_time_series(ax, sim, reskey, resnum, args, labels=labels, colors=colors, plot_burnin=plot_burnin) if args.show['data']: plot_data(sim, ax, reskey, args.scatter, color=color) # Plot the data title_grid_legend(ax, title, grid, commaticks, setylim, args.legend, args.show) elif plot_type == 'type_dist': ax = plot_type_bars(sim, ax, plot_arg.year, args) title = f'{title}, {int(plot_arg.year)}' title_grid_legend(ax, title, grid, commaticks, setylim, args.legend, args.show) elif plot_type == 'age_dist': for resnum,reskey in enumerate(plot_arg.keys): ax = plot_age_dist(sim, ax, reskey, plot_arg.year, args) title = f'{title}, {int(plot_arg.year)}' title_grid_legend(ax, title, grid, commaticks, setylim, args.legend, args.show) output = tidy_up(fig, figs, do_save, fig_path, do_show, args) return output
[docs]def plot_scens(to_plot=None, scens=None, do_save=None, fig_path=None, fig_args=None, plot_args=None, scatter_args=None, axis_args=None, fill_args=None, legend_args=None, date_args=None, show_args=None, style_args=None, n_cols=None, grid=False, commaticks=True, setylim=True, log_scale=False, colors=None, labels=None, do_show=None, sep_figs=False, fig=None, ax=None, plot_burnin=False,**kwargs): ''' Plot the results of a scenario -- see Scenarios.plot() for documentation ''' # Handle inputs args = handle_args(fig_args=fig_args, plot_args=plot_args, scatter_args=scatter_args, axis_args=axis_args, fill_args=fill_args, legend_args=legend_args, show_args=show_args, date_args=date_args, style_args=style_args, **kwargs) to_plot, n_cols, n_rows = handle_to_plot('scens', to_plot, n_cols, sim=scens.base_sim, check_ready=False) # Since this sim isn't run # Do the plotting with hpo.with_style(args.style): fig, figs = create_figs(args, sep_figs, fig, ax) default_colors = sc.gridcolors(ncolors=len(scens.sims)) for pnum,plot_arg in enumerate(to_plot): title = plot_arg.name ax = create_subplots(figs, fig, ax, n_rows, n_cols, pnum, args.fig, sep_figs, log_scale, title) reskeys = sc.promotetolist(plot_arg.keys) # In case it's a string for reskey in reskeys: res_t = scens.res_yearvec resdata = scens.results[reskey] for snum,scenkey,scendata in resdata.enumitems(): sim = scens.sims[scenkey][0] # Pull out the first sim in the list for this scenario bi = 0 if plot_burnin else int(sim['burnin']) genotypekeys = sim.result_keys('genotype') sexkeys = sim.result_keys('sex') if reskey in genotypekeys: ng = sim['n_genotypes'] genotype_colors = sc.gridcolors(ng) for genotype in range(ng): res_y = scendata.best color = genotype_colors[genotype] label = sim['genotypes'][genotype] ax.fill_between(res_t, scendata.low[genotype,:], scendata.high[genotype,:], color=color, **args.fill) # Create the uncertainty bound ax.plot(res_t[bi:], res_y[genotype,bi:], label=label, c=color, **args.plot) # Plot the actual line elif reskey in sexkeys: n_sexes = 2 sex_colors = ['#4679A2', '#A24679'] sex_labels = ['males', 'females'] for sex in range(n_sexes): # Colors and labels res_y = scendata.best[sex, :] color = sex_colors[sex] label = reskey + sex_labels[sex] ax.fill_between(res_t[bi:], scendata.low[genotype, bi:], scendata.high[genotype, bi:], color=color, **args.fill) # Create the uncertainty bound ax.plot(res_t[bi:], res_y[bi:], label=label, c=color, **args.plot) # Plot the actual line else: res_y = scendata.best color = set_line_options(colors, scenkey, snum, default_colors[snum]) # Choose the color label = set_line_options(labels, scenkey, snum, scendata.name) # Choose the label ax.fill_between(res_t[bi:], scendata.low[bi:], scendata.high[bi:], color=color, **args.fill) # Create the uncertainty bound ax.plot(res_t[bi:], res_y[bi:], label=label, c=color, **args.plot) # Plot the actual line if args.show['interventions']: plot_interventions(sim, ax) # Plot the interventions if args.show['legend']: title_grid_legend(ax, title, grid, commaticks, setylim, args.legend, args.show, pnum==0) # Configure the title, grid, and legend -- only show legend for first return tidy_up(fig, figs, do_save, fig_path, do_show, args)
[docs]def plot_scen_age_results(analyzer_ref=0, to_plot=None, scens=None, do_save=None, fig_path=None, fig_args=None, plot_args=None, scatter_args=None, axis_args=None, fill_args=None, legend_args=None, date_args=None, show_args=None, style_args=None, n_cols=None, grid=False, commaticks=True, setylim=True, log_scale=False, colors=None, labels=None, do_show=None, sep_figs=False, fig=None, ax=None, plot_burnin=False, plot_type='sns.boxplot', **kwargs): ''' Plot age results of a scenario''' # Import Seaborn here since slow if sc.isstring(plot_type) and plot_type.startswith('sns'): import seaborn as sns plot_func = getattr(sns, plot_type.split('.')[1]) else: plot_func = plot_type # Handle inputs args = handle_args(fig_args=fig_args, plot_args=plot_args, scatter_args=scatter_args, axis_args=axis_args, fill_args=fill_args, legend_args=legend_args, show_args=show_args, date_args=date_args, style_args=style_args, **kwargs) # Get the analyzer details from the base sim base_analyzer = scens.sims[0][0].get_analyzer(analyzer_ref) if not len(base_analyzer.results): errormsg = 'Cannot plot since no age results were recorded.' raise ValueError(errormsg) base_res = base_analyzer.results[0] result_keys = base_analyzer.result_keys.keys() all_dates = [[date for date in r.keys() if date != 'bins'] for r in base_analyzer.results.values()] dates_per_result = [len(date_list) for date_list in all_dates] n_plots = sum(dates_per_result) n_rows, n_cols = sc.get_rows_cols(n_plots) # Construct dataframe for result storage n_runs = scens['n_runs'] # Do the plotting with hpo.with_style(args.style): fig, figs = create_figs(args, sep_figs, fig, ax) pnum = 0 age_labels = {} for rn,reskey in enumerate(result_keys): age_bins = base_analyzer.results[reskey]['bins'] age_labels[reskey] = [str(int(age_bins[i])) + '-' + str(int(age_bins[i + 1])) for i in range(len(age_bins) - 1)] age_labels[reskey].append(str(int(age_bins[-1])) + '+') for tp in all_dates[rn]: # Construct a dataframe with things in the most logical order for plotting bins = [] scen_names = [] values = [] n_bins = len(base_res['bins']) for bno, bin in enumerate(base_res['bins']): for sno in range(len(scens.scenarios)): for rep in range(n_runs): bins.append(bin) scen_key = scens.sims.keys()[sno] scen_names.append(scens.scenarios[scen_key]['name']) values.append(scens.sims[sno][rep].get_analyzer(analyzer_ref).results[reskey][tp][bno]) replicates = np.arange(n_runs).tolist() * n_bins * len(scens.scenarios) resdict = dict(bin=bins, scen_name=scen_names, replicate=replicates, value=values) resdf = pd.DataFrame(resdict) # Start plot ax = pl.subplot(n_rows, n_cols, pnum+1) ax = plot_func(ax=ax, x="bin", y="value", hue="scen_name", data=resdf, dodge=True) ax.legend([], [], frameon=False) # Temporarily turn off legend title = f'{base_analyzer.result_properties[reskey].name} - {int(float(tp))}' if args.show['legend']: title_grid_legend(ax, title, grid, commaticks, setylim, args.legend, args.show, pnum == 0) # Configure the title, grid, and legend -- only show legend for first ax.set_xlabel("Age group") ax.set_xticklabels(age_labels[reskey]) ax.set_ylabel("") pnum +=1 return tidy_up(fig, figs, do_save, fig_path, do_show, args)
[docs]def plot_result(key, sim=None, fig_args=None, plot_args=None, axis_args=None, scatter_args=None, date_args=None, style_args=None, grid=False, commaticks=True, setylim=True, color=None, label=None, do_show=None, do_save=False, fig_path=None, fig=None, ax=None, plot_burnin=False, **kwargs): ''' Plot a single result -- see ``hpv.Sim.plot_result()`` for documentation ''' # Handle inputs sep_figs = False # Only one figure fig_args = sc.mergedicts({'figsize':(8,5)}, fig_args) axis_args = sc.mergedicts({'top': 0.95}, axis_args) args = handle_args(fig_args=fig_args, plot_args=plot_args, scatter_args=scatter_args, axis_args=axis_args, date_args=date_args, style_args=style_args, **kwargs) # Gather results res = sim.results[key] res_t = sim.results['year'] bi = 0 if plot_burnin else int(sim['burnin']) if color is None: color = res.color # Do the plotting with hpo.with_style(args.style): fig, figs = create_figs(args, sep_figs, fig, ax) # Reuse the figure, if available if ax is None: # Otherwise, make a new one try: ax = fig.axes[0] except: ax = fig.add_subplot(111, label='ax1') if label is None: label = res.name if res.low is not None and res.high is not None: ax.fill_between(res_t[bi:], res.low[bi:], res.high[bi:], color=color, **args.fill) # Create the uncertainty bound ax.plot(res_t[bi:], res.values[bi:], c=color, label=label, **args.plot) plot_interventions(sim, ax) # Plot the interventions title_grid_legend(ax, res.name, grid, commaticks, setylim, args.legend, args.show) # Configure the title, grid, and legend return tidy_up(fig, figs, sep_figs, do_save, fig_path, do_show, args)
def plot_heatmap(sweep, xx, yy, x=None, y=None, xi=None, yi=None, to_plot=None, xpar=None, ypar=None, npts=None, zscales=1, add_contours=True, contour_args=None, cmap='plasma', fig_args=None, plot_args=None, axis_args=None, legend_args=None, show_args=None, style_args=None, fig=None, ax=None, do_save=None, do_show=None, fig_path=None): ''' Plot heatmaps ''' # Handle inputs axis_args = sc.mergedicts(axis_args, dict(wspace=0.05, right=0.9)) # Set right margin to be smaller args = handle_args(fig_args=fig_args, plot_args=plot_args, axis_args=axis_args, contour_args=contour_args, legend_args=legend_args, show_args=show_args, style_args=style_args) # Figure out axes n_plots = len(to_plot) n_rows, n_cols = sc.get_rows_cols(n_plots) n_cols_true = 2*n_cols # Add one more columns per column, for storing the heatmap colorbars width_ratios = [20, 1]*n_cols npts = npts or 100 scale = 0.08 # Handle scale factors if sc.isnumber(zscales): zscales = [zscales]*n_plots # Plot with hpo.with_style(args.style): fig = pl.figure(**args.fig) gs = fig.add_gridspec(n_rows, n_cols_true, width_ratios=width_ratios) pl.subplots_adjust(**args.axis) pn, coln = 0, 0 for rn in range(n_rows): for cn in range(0,n_cols*2,2): # Increment by two columns each time # Deal with precision zscale = zscales[pn] precision = zscale/10 rounding_factor = -int(np.log10(precision)) res_to_plot = to_plot[pn] z = np.array(sweep.resdf[res_to_plot]) / zscale z_min = min(z) z_max = max(z) zz = sc.gauss2d(x, y, z, xi, yi, scale=scale, xscale=1, yscale=1, grid=True) scolors = sc.vectocolor(z, cmap=cmap, minval=z_min, maxval=z_max) # Plot heatmap axa = fig.add_subplot(gs[rn, cn]) ima = axa.contourf(xx, yy, zz, cmap=cmap) #, levels=np.linspace(z_min, z_max, npts)) # Optionally add scatter if (x is not None) and (y is not None) and (scolors is not None): axa.scatter(x, y, marker='o', c=scolors, edgecolor=[0.3] * 3, s=50, linewidth=0.1, alpha=0.5) if add_contours: axa.contour(xx, yy, zz, **args.contours) axa.set_xlabel(xpar) axa.set_ylabel(ypar) # Get the right information in the title title = sweep.res_labels[res_to_plot] # Result label title += f', {int(sweep.from_year)}-{int(sweep.to_year)}' if zscale != 1: if zscale == 100: title += ' (hundreds)' elif zscale == 1000: title += ' (thousands)' elif zscale == 10000: title += ' (0000s)' elif zscale == 100000: title += ' (00000s)' elif zscale == 1000000: title += ' (M)' axa.set_title(title) # Colorbar axc = fig.add_subplot(gs[rn, cn+1]) pl.colorbar(ima, cax=axc) pn += 1 return tidy_up(fig, do_save, fig_path, do_show, args) # def plot_compare(df, log_scale=True, fig_args=None, axis_args=None, style_args=None, grid=False, # commaticks=True, setylim=True, color=None, label=None, fig=None, # do_save=None, do_show=None, fig_path=None, **kwargs): # ''' Plot a MultiSim comparison -- see MultiSim.plot_compare() for documentation ''' # # Handle inputs # sep_figs = False # fig_args = sc.mergedicts({'figsize':(8,8)}, fig_args) # axis_args = sc.mergedicts({'left': 0.16, 'bottom': 0.05, 'right': 0.98, 'top': 0.98, 'wspace': 0.50, 'hspace': 0.10}, axis_args) # args = handle_args(fig_args=fig_args, axis_args=axis_args, style_args=style_args, **kwargs) # # Map from results into different categories # mapping = { # 'cum': 'Cumulative counts', # 'new': 'New counts', # 'n': 'Number in state', # 'r': 'R_eff', # } # category = [] # for v in df.index.values: # v_type = v.split('_')[0] # if v_type in mapping: # category.append(v_type) # else: # category.append('other') # df['category'] = category # # Plot # with cvo.with_style(args.style): # fig, figs = create_figs(args, sep_figs=False, fig=fig) # for i,m in enumerate(mapping): # not_r_eff = m != 'r' # if not_r_eff: # ax = fig.add_subplot(2, 2, i+1) # else: # ax = fig.add_subplot(8, 2, 10) # dfm = df[df['category'] == m] # logx = not_r_eff and log_scale # dfm.plot(ax=ax, kind='barh', logx=logx, legend=False) # if not(not_r_eff): # ax.legend(loc='upper left', bbox_to_anchor=(0,-0.3)) # ax.grid(True) # return tidy_up(fig, figs, sep_figs, do_save, fig_path, do_show, args) #%% Other plotting functions
[docs]def plot_people(people, bins=None, width=1.0, alpha=0.6, fig_args=None, axis_args=None, plot_args=None, style_args=None, do_show=None, fig=None): ''' Plot statistics of a population -- see People.plot() for documentation ''' # Handle inputs if bins is None: bins = np.arange(0,101) # Set defaults color = [0.1,0.1,0.1] # Color for the age distribution n_rows = 4 # Number of rows of plots offset = 0.5 # For ensuring the full bars show up gridspace = 10 # Spacing of gridlines zorder = 10 # So plots appear on top of gridlines # Handle other arguments fig_args = sc.mergedicts(dict(figsize=(18,11)), fig_args) axis_args = sc.mergedicts(dict(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.3, hspace=0.35), axis_args) plot_args = sc.mergedicts(dict(lw=1.5, alpha=0.6, c=color, zorder=10), plot_args) style_args = sc.mergedicts(style_args) # Compute statistics min_age = min(bins) max_age = max(bins) edges = np.append(bins, np.inf) # Add an extra bin to end to turn them into edges age_counts = np.histogram(people.age, edges)[0] with hpo.with_style(style_args): # Create the figure if fig is None: fig = pl.figure(**fig_args) pl.subplots_adjust(**axis_args) # Plot age histogram pl.subplot(n_rows,2,1) pl.bar(bins, age_counts, color=color, alpha=alpha, width=width, zorder=zorder) pl.xlim([min_age-offset,max_age+offset]) pl.xticks(np.arange(0, max_age+1, gridspace)) pl.xlabel('Age') pl.ylabel('Number of people') pl.title(f'Age distribution ({len(people):n} people total)') # Plot cumulative distribution pl.subplot(n_rows,2,2) age_sorted = sorted(people.age) y = np.linspace(0, 100, len(age_sorted)) # Percentage, not hard-coded! pl.plot(age_sorted, y, '-', **plot_args) pl.xlim([0,max_age]) pl.ylim([0,100]) # Percentage pl.xticks(np.arange(0, max_age+1, gridspace)) pl.yticks(np.arange(0, 101, gridspace)) # Percentage pl.xlabel('Age') pl.ylabel('Cumulative proportion (%)') pl.title(f'Cumulative age distribution (mean age: {people.age.mean():0.2f} years)') # Calculate contacts lkeys = people.layer_keys() n_layers = len(lkeys) contact_counts = sc.objdict() for lk in lkeys: layer = people.contacts[lk] p1ages = people.age[layer['f']] p2ages = people.age[layer['m']] contact_counts[lk] = np.histogram(p1ages, edges)[0] + np.histogram(p2ages, edges)[0] # Plot contacts layer_colors = sc.gridcolors(n_layers) share_ax = None for w,w_type in enumerate(['total', 'percapita', 'weighted']): # Plot contacts in different ways for i,lk in enumerate(lkeys): contacts_lk = people.contacts[lk] members_lk = contacts_lk.members n_contacts = len(contacts_lk) n_members = len(members_lk) if w_type == 'total': weight = 1 total_contacts = 2*n_contacts # x2 since each contact is undirected ylabel = 'Number of contacts' participation = n_members/len(people) # Proportion of people that have contacts in this layer title = f'Total contacts for layer "{lk}": {total_contacts:n}\n({participation*100:.0f}% participation)' elif w_type == 'percapita': age_counts_within_layer = np.histogram(people.age[members_lk], edges)[0] weight = np.divide(1.0, age_counts_within_layer, where=age_counts_within_layer>0) mean_contacts_within_layer = 2*n_contacts/n_members if n_members else 0 # Factor of 2 since edges are bi-directional ylabel = 'Per capita number of contacts' title = f'Mean contacts for layer "{lk}": {mean_contacts_within_layer:0.2f}' elif w_type == 'weighted': weight = people.pars['beta'] total_weight = np.round(weight*2*n_contacts) ylabel = 'Weighted number of contacts' title = f'Total weight for layer "{lk}": {total_weight:n}' ax = pl.subplot(n_rows, n_layers, n_layers*(w+1)+i+1, sharey=share_ax) pl.bar(bins, contact_counts[lk]*weight, color=layer_colors[i], width=width, zorder=zorder, alpha=alpha) pl.xlim([min_age-offset,max_age+offset]) pl.xticks(np.arange(0, max_age+1, gridspace)) pl.xlabel('Age') pl.ylabel(ylabel) pl.title(title) if w_type == 'weighted': share_ax = ax # Update shared axis return handle_show_return(fig=fig, do_show=do_show)