T6 - Using analyzers

Analyzers are objects that do not change the behavior of a simulation, but just report on its internal state, almost always something to do with sim.people. This tutorial takes you through some of the built-in analyzers and gives a brief example of how to build your own.

Click here to open an interactive version of this notebook.

Results by age

By far the most common reason to use an analyzer is to report results by age. The results in sim.results already include results disaggregated by age, e.g. sim.results['cancers_by_age'], but these results use standardized age bins which may not match the age bins for available data on cervical cancers. Age-specific outputs can be customized using an analyzer to match the age bins of the data. The following example shows how to set this up:

[1]:
import numpy as np
import sciris as sc
import hpvsim as hpv

# Create some parameters, setting beta (per-contact transmission probability) higher
# to create more cancers for illutration
pars = dict(beta=0.5, n_agents=50e3, start=1970, n_years=50, dt=1., location='tanzania')

# Also set initial HPV prevalence to be high, again to generate more cancers
pars['init_hpv_prev'] = {
    'age_brackets'  : np.array([  12,   17,   24,   34,  44,   64,    80, 150]),
    'm'             : np.array([ 0.0, 0.75, 0.9, 0.45, 0.1, 0.05, 0.005, 0]),
    'f'             : np.array([ 0.0, 0.75, 0.9, 0.45, 0.1, 0.05, 0.005, 0]),
}

# Create the age analyzers.
az1 = hpv.age_results(
    result_args=sc.objdict(
        hpv_prevalence=sc.objdict( # The keys of this dictionary are any results you want by age, and can be any key of sim.results
            years=2019, # List the years that you want to generate results for
            edges=np.array([0., 15., 20., 25., 30., 40., 45., 50., 55., 65., 100.]),
        ),
        hpv_incidence=sc.objdict(
            years=2019,
            edges=np.array([0., 15., 20., 25., 30., 40., 45., 50., 55., 65., 100.]),
        ),
        cancer_incidence=sc.objdict(
            years=2019,
            edges=np.array([0.,20.,25.,30.,40.,45.,50.,55.,65.,100.]),
        ),
        cancer_mortality=sc.objdict(
            years=2019,
            edges=np.array([0., 20., 25., 30., 40., 45., 50., 55., 65., 100.]),
        )
    )
)

sim = hpv.Sim(pars, genotypes=[16, 18], analyzers=[az1])
sim.run()
a = sim.get_analyzer()
a.plot();
HPVsim 1.2.0 (2023-05-31) — © 2023 by IDM
HPVsim data: at least one file missing: {'metadata': False, 'age_dist': False, 'birth': False, 'death': False, 'life_expectancy': False}


————————————————————————————————————
Downloading preprocessed HPVsim data
————————————————————————————————————

Note: this automatic download only happens once, when HPVsim is first run.


Downloading 1 URL(s)...
Downloading https://github.com/amath-idm/hpvsim_data/blob/main/hpvsim_data_v1.1.zip?raw=true...
Saving to /home/docs/checkouts/readthedocs.org/user_builds/institute-for-disease-modeling-hpvsim/checkouts/v1.2.0/docs/tutorials/files/tmp_hpvsim_data_v1.1.zip.zip...
Time to download https://github.com/amath-idm/hpvsim_data/blob/main/hpvsim_data_v1.1.zip?raw=true: 0.617 s
Time to download 1 URLs: 0.617 s
Removed "/home/docs/checkouts/readthedocs.org/user_builds/institute-for-disease-modeling-hpvsim/checkouts/v1.2.0/docs/tutorials/files/tmp_hpvsim_data_v1.1.zip.zip"

Data downloaded.
Loading location-specific demographic data for "tanzania"
/home/docs/checkouts/readthedocs.org/user_builds/institute-for-disease-modeling-hpvsim/envs/v1.2.0/lib/python3.9/site-packages/sciris/sc_fileio.py:172: UserWarning: Fixing known unpickling deprecation "No module named 'pandas.core.indexes.numeric'"
  obj = _unpickler(filestr, **kw, **kwargs) # Unpickle the data
Initializing sim with 50000 agents
Loading location-specific data for "tanzania"
/home/docs/checkouts/readthedocs.org/user_builds/institute-for-disease-modeling-hpvsim/envs/v1.2.0/lib/python3.9/site-packages/sciris/sc_fileio.py:172: UserWarning: Fixing known unpickling deprecation "No module named 'pandas.core.indexes.numeric'"
  obj = _unpickler(filestr, **kw, **kwargs) # Unpickle the data
  Running 1970.0 ( 0/51) (1.09 s)  ———————————————————— 2%
  Running 1980.0 (10/51) (2.01 s)  ••••———————————————— 22%
  Running 1990.0 (20/51) (3.24 s)  ••••••••———————————— 41%
  Running 2000.0 (30/51) (4.74 s)  ••••••••••••———————— 61%
  Running 2010.0 (40/51) (6.72 s)  ••••••••••••••••———— 80%
  Running 2020.0 (50/51) (9.68 s)  •••••••••••••••••••• 100%

Simulation summary:
        1,071 infections
            0 dysplasias
            0 pre-cins
            0 cin1s
        1,232 cin2s
          375 cin3s
        2,570 cins
          107 cancers
            0 cancer detections
           54 cancer deaths
            0 detected cancer deaths
          535 reinfections
            0 reactivations
   121,557,432 number susceptible
        4,150 number infectious
          750 number with inactive infection
   60,774,880 number with no cellular changes
      428,527 number with episomal infection
            0 number with transformation
          750 number with cancer
        4,900 number infected
      429,277 number with abnormal cells
            0 number with latent infection
          535 number with precin
       16,573 number with cin1
        9,853 number with cin2
       17,805 number with cin3
       44,232 number with detectable dysplasia
            0 number with detected cancer
            0 number screened
            0 number treated for precancerous lesions
            0 number treated for cancer
            0 number vaccinated
            0 number given therapeutic vaccine
         0.00 hpv incidence (/100)
            0 cin1 incidence (/100,000)
            0 cin2 incidence (/100,000)
            0 cin3 incidence (/100,000)
            0 dysplasia incidence (/100,000)
            0 cancer incidence (/100,000)
    2,132,060 births
      302,124 other deaths
      -34,271 migration
            1 age-adjusted cervical cancer incidence (/100,000)
            0 age-adjusted cervical cancer mortality
            0 newly vaccinated
            0 cumulative number vaccinated
            0 new doses
            0 cumulative doses
            0 new therapeutic vaccine doses
            0 newly received therapeutic vaccine
            0 cumulative therapeutic vaccine doses
            0 total received therapeutic vaccine
            0 new screens
            0 newly screened
            0 new cin treatments
            0 newly treated for cins
            0 new cancer treatments
            0 newly treated for cancer
            0 cumulative screens
            0 cumulative number screened
            0 cumulative cin treatments
            0 cumulative number treated for cins
            0 cumulative cancer treatments
            0 cumulative number treated for cancer
            0 detected cancer incidence (/100,000)
            0 cancer mortality
   60,774,880 number alive
            0 crude death rate
            0 crude birth rate
         0.00 hpv prevalence (/100)
            0 pre-cin prevalence (/100,000)
            0 cin1 prevalence (/100,000)
            0 cin2 prevalence (/100,000)
            0 cin3 prevalence (/100,000)

../_images/tutorials_tut_analyzers_3_5.svg

It’s also possible to plot these results alongside data.

[2]:
az2 = hpv.age_results(
    result_args=sc.objdict(
        cancers=sc.objdict(
            datafile='example_cancer_cases.csv',
        ),
    )
)
sim = hpv.Sim(pars, genotypes=[16, 18], analyzers=[az2])
sim.run()
a = sim.get_analyzer()
a.plot();
Loading location-specific demographic data for "tanzania"
Initializing sim with 50000 agents
Loading location-specific data for "tanzania"
  Running 1970.0 ( 0/51) (0.10 s)  ———————————————————— 2%
  Running 1980.0 (10/51) (1.01 s)  ••••———————————————— 22%
  Running 1990.0 (20/51) (2.17 s)  ••••••••———————————— 41%
  Running 2000.0 (30/51) (3.67 s)  ••••••••••••———————— 61%
  Running 2010.0 (40/51) (5.66 s)  ••••••••••••••••———— 80%
  Running 2020.0 (50/51) (8.46 s)  •••••••••••••••••••• 100%

Simulation summary:
        1,071 infections
            0 dysplasias
            0 pre-cins
            0 cin1s
        1,232 cin2s
          375 cin3s
        2,570 cins
          107 cancers
            0 cancer detections
           54 cancer deaths
            0 detected cancer deaths
          535 reinfections
            0 reactivations
   121,557,432 number susceptible
        4,150 number infectious
          750 number with inactive infection
   60,774,880 number with no cellular changes
      428,527 number with episomal infection
            0 number with transformation
          750 number with cancer
        4,900 number infected
      429,277 number with abnormal cells
            0 number with latent infection
          535 number with precin
       16,573 number with cin1
        9,853 number with cin2
       17,805 number with cin3
       44,232 number with detectable dysplasia
            0 number with detected cancer
            0 number screened
            0 number treated for precancerous lesions
            0 number treated for cancer
            0 number vaccinated
            0 number given therapeutic vaccine
         0.00 hpv incidence (/100)
            0 cin1 incidence (/100,000)
            0 cin2 incidence (/100,000)
            0 cin3 incidence (/100,000)
            0 dysplasia incidence (/100,000)
            0 cancer incidence (/100,000)
    2,132,060 births
      302,124 other deaths
      -34,271 migration
            1 age-adjusted cervical cancer incidence (/100,000)
            0 age-adjusted cervical cancer mortality
            0 newly vaccinated
            0 cumulative number vaccinated
            0 new doses
            0 cumulative doses
            0 new therapeutic vaccine doses
            0 newly received therapeutic vaccine
            0 cumulative therapeutic vaccine doses
            0 total received therapeutic vaccine
            0 new screens
            0 newly screened
            0 new cin treatments
            0 newly treated for cins
            0 new cancer treatments
            0 newly treated for cancer
            0 cumulative screens
            0 cumulative number screened
            0 cumulative cin treatments
            0 cumulative number treated for cins
            0 cumulative cancer treatments
            0 cumulative number treated for cancer
            0 detected cancer incidence (/100,000)
            0 cancer mortality
   60,774,880 number alive
            0 crude death rate
            0 crude birth rate
         0.00 hpv prevalence (/100)
            0 pre-cin prevalence (/100,000)
            0 cin1 prevalence (/100,000)
            0 cin2 prevalence (/100,000)
            0 cin3 prevalence (/100,000)

../_images/tutorials_tut_analyzers_5_1.svg

These results are not particularly well matched to the data, but we will deal with this in the calibration tutorial later.

Snapshots

Snapshots both take “pictures” of the sim.people object at specified points in time. This is because while most of the information from sim.people is retrievable at the end of the sim from the stored events, it’s much easier to see what’s going on at the time. The following example leverages a snapshot in order to create a figure demonstrating age mixing patterns among sexual contacts:

[3]:
snap = hpv.snapshot(timepoints=['2020'])
sim = hpv.Sim(pars, analyzers=snap)
sim.run()

a = sim.get_analyzer()
people = a.snapshots[0]

# Plot age mixing
import pylab as pl
import matplotlib as mpl
fig, ax = pl.subplots(nrows=1, ncols=1, figsize=(5, 4))

fc = people.contacts['m']['age_f'] # Get the age of female contacts in marital partnership
mc = people.contacts['m']['age_m'] # Get the age of male contacts in marital partnership
h = ax.hist2d(fc, mc, bins=np.linspace(0, 75, 16), density=True, norm=mpl.colors.LogNorm())
ax.set_xlabel('Age of female partner')
ax.set_ylabel('Age of male partner')
fig.colorbar(h[3], ax=ax)
ax.set_title('Marital age mixing')
pl.show();
Loading location-specific demographic data for "tanzania"
Initializing sim with 50000 agents
Loading location-specific data for "tanzania"
  Running 1970.0 ( 0/51) (0.10 s)  ———————————————————— 2%
  Running 1980.0 (10/51) (1.23 s)  ••••———————————————— 22%
  Running 1990.0 (20/51) (2.78 s)  ••••••••———————————— 41%
  Running 2000.0 (30/51) (5.10 s)  ••••••••••••———————— 61%
  Running 2010.0 (40/51) (7.99 s)  ••••••••••••••••———— 80%
  Running 2020.0 (50/51) (11.53 s)  •••••••••••••••••••• 100%

Simulation summary:
        1,606 infections
            0 dysplasias
            0 pre-cins
            0 cin1s
        1,419 cin2s
          295 cin3s
        4,257 cins
            0 cancers
            0 cancer detections
          214 cancer deaths
            0 detected cancer deaths
        1,339 reinfections
            0 reactivations
   182,339,280 number susceptible
        5,114 number infectious
          884 number with inactive infection
   60,774,108 number with no cellular changes
      438,059 number with episomal infection
            0 number with transformation
          884 number with cancer
        5,998 number infected
      438,943 number with abnormal cells
            0 number with latent infection
            0 number with precin
       22,544 number with cin1
        7,202 number with cin2
       16,172 number with cin3
       45,624 number with detectable dysplasia
            0 number with detected cancer
            0 number screened
            0 number treated for precancerous lesions
            0 number treated for cancer
            0 number vaccinated
            0 number given therapeutic vaccine
         0.00 hpv incidence (/100)
            0 cin1 incidence (/100,000)
            0 cin2 incidence (/100,000)
            0 cin3 incidence (/100,000)
            0 dysplasia incidence (/100,000)
            0 cancer incidence (/100,000)
    2,132,060 births
      301,375 other deaths
      -35,342 migration
            0 age-adjusted cervical cancer incidence (/100,000)
            0 age-adjusted cervical cancer mortality
            0 newly vaccinated
            0 cumulative number vaccinated
            0 new doses
            0 cumulative doses
            0 new therapeutic vaccine doses
            0 newly received therapeutic vaccine
            0 cumulative therapeutic vaccine doses
            0 total received therapeutic vaccine
            0 new screens
            0 newly screened
            0 new cin treatments
            0 newly treated for cins
            0 new cancer treatments
            0 newly treated for cancer
            0 cumulative screens
            0 cumulative number screened
            0 cumulative cin treatments
            0 cumulative number treated for cins
            0 cumulative cancer treatments
            0 cumulative number treated for cancer
            0 detected cancer incidence (/100,000)
            1 cancer mortality
   60,774,108 number alive
            0 crude death rate
            0 crude birth rate
         0.00 hpv prevalence (/100)
            0 pre-cin prevalence (/100,000)
            0 cin1 prevalence (/100,000)
            0 cin2 prevalence (/100,000)
            0 cin3 prevalence (/100,000)

../_images/tutorials_tut_analyzers_8_1.svg

Age pyramids

Age pyramids, like snapshots, take a picture of the people at a given point in time, and then bin them into age groups by sex. These can also be plotted alongside data:

[4]:
# Create some parameters
pars = dict(n_agents=50e3, start=2000, n_years=30, dt=0.5)

# Make the age pyramid analyzer
age_pyr = hpv.age_pyramid(
    timepoints=['2010', '2020'],
    datafile='south_africa_age_pyramid.csv',
    edges=np.linspace(0, 100, 21))

# Make the sim, run, get the analyzer, and plot
sim = hpv.Sim(pars, location='south africa', analyzers=age_pyr)
sim.run()
a = sim.get_analyzer()
fig = a.plot(percentages=True);
Loading location-specific demographic data for "south africa"
Initializing sim with 50000 agents
Loading location-specific data for "south africa"
Dates provided in the age pyramid datafile ({'1990.0', '2000.0', '2020.0', '2010.0'}) are not the same as the age pyramid dates that were requested (['2010.0' '2020.0']).
Plots will only show requested dates, not all dates in the datafile.
  Running 2000.0 ( 0/62) (0.10 s)  ———————————————————— 2%
  Running 2005.0 (10/62) (0.87 s)  •••————————————————— 18%
  Running 2010.0 (20/62) (1.66 s)  ••••••—————————————— 34%
  Running 2015.0 (30/62) (2.50 s)  ••••••••••—————————— 50%
  Running 2020.0 (40/62) (3.39 s)  •••••••••••••——————— 66%
  Running 2025.0 (50/62) (4.29 s)  ••••••••••••••••———— 82%
  Running 2030.0 (60/62) (5.22 s)  •••••••••••••••••••— 98%
Simulation summary:
      238,627 infections
            0 dysplasias
            0 pre-cins
       31,972 cin1s
       12,397 cin2s
       10,720 cin3s
      118,102 cins
        2,051 cancers
            0 cancer detections
        2,610 cancer deaths
            0 detected cancer deaths
      182,699 reinfections
            0 reactivations
   193,742,736 number susceptible
      456,467 number infectious
       18,643 number with inactive infection
   64,434,588 number with no cellular changes
    4,921,401 number with episomal infection
           93 number with transformation
       18,643 number with cancer
      475,110 number infected
    4,940,044 number with abnormal cells
            0 number with latent infection
       61,241 number with precin
      270,226 number with cin1
       88,460 number with cin2
      142,803 number with cin3
      498,693 number with detectable dysplasia
            0 number with detected cancer
            0 number screened
            0 number treated for precancerous lesions
            0 number treated for cancer
            0 number vaccinated
            0 number given therapeutic vaccine
         0.04 hpv incidence (/100)
            0 cin1 incidence (/100,000)
            0 cin2 incidence (/100,000)
            0 cin3 incidence (/100,000)
            0 dysplasia incidence (/100,000)
            6 cancer incidence (/100,000)
    1,272,366 births
      601,228 other deaths
      -96,942 migration
            6 age-adjusted cervical cancer incidence (/100,000)
            0 age-adjusted cervical cancer mortality
            0 newly vaccinated
            0 cumulative number vaccinated
            0 new doses
            0 cumulative doses
            0 new therapeutic vaccine doses
            0 newly received therapeutic vaccine
            0 cumulative therapeutic vaccine doses
            0 total received therapeutic vaccine
            0 new screens
            0 newly screened
            0 new cin treatments
            0 newly treated for cins
            0 new cancer treatments
            0 newly treated for cancer
            0 cumulative screens
            0 cumulative number screened
            0 cumulative cin treatments
            0 cumulative number treated for cins
            0 cumulative cancer treatments
            0 cumulative number treated for cancer
            0 detected cancer incidence (/100,000)
            8 cancer mortality
   64,434,588 number alive
            0 crude death rate
            0 crude birth rate
         0.24 hpv prevalence (/100)
            0 pre-cin prevalence (/100,000)
            0 cin1 prevalence (/100,000)
            0 cin2 prevalence (/100,000)
            0 cin3 prevalence (/100,000)

../_images/tutorials_tut_analyzers_10_1.svg