idmtools.builders.simulation_builder module¶
-
class
idmtools.builders.simulation_builder.
SimulationBuilder
¶ Bases:
object
Class that represents an experiment builder.
Examples
import os import sys from idmtools.assets import AssetCollection from idmtools.builders import SimulationBuilder from idmtools.core.platform_factory import platform from idmtools.entities.experiment import Experiment from idmtools.entities.templated_simulation import TemplatedSimulations from idmtools_models.python.json_python_task import JSONConfiguredPythonTask from idmtools_test import COMMON_INPUT_PATH with platform('BELEGOST'): base_task = JSONConfiguredPythonTask( script_path=os.path.join(COMMON_INPUT_PATH, "compsplatform", "working_model.py"), # add common assets from existing collection common_assets=AssetCollection.from_id('41c1b14d-0a04-eb11-a2c7-c4346bcb1553', as_copy=True) ) ts = TemplatedSimulations(base_task=base_task) # sweep parameter builder = SimulationBuilder() builder.add_sweep_definition(JSONConfiguredPythonTask.set_parameter_partial("min_x"), range(-2, 0)) builder.add_sweep_definition(JSONConfiguredPythonTask.set_parameter_partial("max_x"), range(1, 3)) ts.add_builder(builder) e = Experiment.from_template(ts, name=os.path.split(sys.argv[0])[1]) e.run(wait_until_done=True) # use system status as the exit code sys.exit(0 if e.succeeded else -1)
Add tags with builder callbacks:
def update_sim(sim, parameter, value): sim.task.set_parameter(parameter, value) # set sim tasks, return {'custom': 123, parameter:value) builder = SimulationBuilder() set_run_number = partial(update_sim, param="Run_Number") builder.add_sweep_definition(set_run_number, range(0, 2)) # create experiment from builder exp = Experiment.from_builder(builder, task, name=expname)
-
SIMULATION_ATTR
= 'simulation'¶
-
add_sweep_definition
(function: Union[Callable[[idmtools.entities.simulation.Simulation, Any], Dict[str, Any]], functools.partial], values: Union[List[Any], Iterable])¶ Add a parameter sweep definition. A sweep definition is composed of a function and a list of values to call the function with.
- Parameters
function – The sweep function, which must include a simulation parameter (or whatever is specified in
SIMULATION_ATTR
). The function also must include EXACTLY ONE free parameter, which the values will be passed to. The function can also be a partial–any Callable type will work.values – The list of values to call the function with.
Examples
Examples of valid function:
def myFunction(simulation, parameter): pass
How to deal with functions requiring more than one parameter? Consider the following function:
python def myFunction(simulation, a, b): pass
Partial solution:
python from functools import partial func = partial(myFunction, a=3) eb.add_sweep_definition(func, [1,2,3])
Callable class solution:
class setP: def __init__(self, a): self.a = a def __call__(self, simulation, b): return param_update(simulation, self.a, b) eb.add_sweep_definition(setP(3), [1,2,3])
-