idmtools.builders.yaml_simulation_builder module¶
idmtools YamlSimulationBuilder definition.
Copyright 2021, Bill & Melinda Gates Foundation. All rights reserved.
- class idmtools.builders.yaml_simulation_builder.DefaultParamFuncDict(default)¶
Bases:
dict
Enables a function that takes a single parameter and return another function.
Notes
TODO Add Example and types
- __init__(default)¶
Initialize our DefaultParamFuncDict.
- Parameters:
default – Default function to use
- class idmtools.builders.yaml_simulation_builder.YamlSimulationBuilder¶
Bases:
idmtools.builders.arm_simulation_builder.ArmSimulationBuilder
Class that represents an experiment builder.
Examples
""" This file demonstrates how to use YamlExperimentBuilder in PythonExperiment's builder. then adding the builder to PythonExperiment. We first load a yaml file from local dir which contains parameters/values to sweep then sweep parameters based in yaml file with YamlExperimentBuilder Behind the scenes, we are using arm sweep, each group is treated with SweepArm and then add to builder Parameters in yaml file group1: - a: 1 - b: 2 - c: [3, 4] - d: [5, 6] group2: - c: [3, 4] - d: [5, 6, 7] Expect sims with parameters: sim1: {a:1, b:2, c:3, d:5} sim2: {a:1, b:2, c:3, d:6} sim3: {a:1, b:2, c:4, d:5} sim4: {a:1, b:2, c:4, d:6} sim5: {c:3, d:5} sim6: {c:3, d:6} sim7: {c:3, d:7} sim8: {c:4, d:5} sim9: {c:4, d:6} sim10: {c:4, d:7} This builder is very similar with ArmExperimentBuilder. but in more direct way. you just need list all cared parameter combinations in yaml file, and let builder do the job """ import os import sys from functools import partial from idmtools.builders import YamlSimulationBuilder from idmtools.core.platform_factory import platform from idmtools.entities.experiment import Experiment from idmtools.entities.templated_simulation import TemplatedSimulations from idmtools_models.python.json_python_task import JSONConfiguredPythonTask from idmtools_test import COMMON_INPUT_PATH # define function partials to be used during sweeps setA = partial(JSONConfiguredPythonTask.set_parameter_sweep_callback, param="a") setB = partial(JSONConfiguredPythonTask.set_parameter_sweep_callback, param="b") setC = partial(JSONConfiguredPythonTask.set_parameter_sweep_callback, param="c") setD = partial(JSONConfiguredPythonTask.set_parameter_sweep_callback, param="d") if __name__ == "__main__": # define what platform we want to use. Here we use a context manager but if you prefer you can # use objects such as Platform('BELEGOST') instead with platform('BELEGOST'): # define our base task base_task = JSONConfiguredPythonTask(script_path=os.path.join(COMMON_INPUT_PATH, "python", "model1.py"), parameters=dict(c='c-value')) # define our input csv sweep base_path = os.path.abspath(os.path.join(COMMON_INPUT_PATH, "builder")) file_path = os.path.join(base_path, 'sweeps.yaml') builder = YamlSimulationBuilder() # define a list of functions to map the specific yaml values func_map = {'a': setA, 'b': setB, 'c': setC, 'd': setD} builder.add_sweeps_from_file(file_path, func_map) # optionally, if you can also pass a function that is used for all parameters # The default behaviour of the builder is to assume the default function will be a partial # and attempts to call it with one var(param) before building sweep # builder.add_sweeps_from_file(file_path, JSONConfiguredPythonTask.set_parameter_partial) # now define we want to create a series of simulations using the base task and the sweep ts = TemplatedSimulations.from_task(base_task) # optionally we could update the base simulation metdata here # ts.base_simulations.tags['example'] 'yes' ts.add_builder(builder) # define our experiment from our template and add some metadata to the experiment experiment = Experiment.from_template(ts, name=os.path.split(sys.argv[0])[1], tags={"string_tag": "test", "number_tag": 123} ) # run the experiment and wait. By default run does not wait # in most real scenarios, you probably do not want to wait as this will wait until all simulations # associated with an experiment are done. We do it in our examples to show feature and to enable # testing of the scripts experiment.run(wait_until_done=True) # use system status as the exit code sys.exit(0 if experiment.succeeded else -1)
- __init__()¶
Constructor.