Source code for idmtools_platform_comps.utils.spatial_output

"""
idmtools utility.

Copyright 2021, Bill & Melinda Gates Foundation. All rights reserved.
"""
import struct
import numpy as np


[docs]class SpatialOutput:
[docs] def __init__(self): self.n_nodes = 0 self.n_tstep = 0 self.nodeids = [] self.data = None self.start = 0 self.interval = 1
[docs] @classmethod def from_bytes(cls, bytes, filtered=False): # The header size changes if the file is a filtered one headersize = 16 if filtered else 8 # Create the class so = cls() # Retrive the number of nodes and number of timesteps so.n_nodes, = struct.unpack('i', bytes[0:4]) so.n_tstep, = struct.unpack('i', bytes[4:8]) # If filtered, retrieve the start and interval if filtered: start, = struct.unpack('f', bytes[8:12]) interval, = struct.unpack('f', bytes[12:16]) so.start = int(start) so.interval = int(interval) # Get the nodeids so.nodeids = struct.unpack(str(so.n_nodes) + 'I', bytes[headersize:headersize + so.n_nodes * 4]) so.nodeids = np.asarray(so.nodeids) # Retrieve the data so.data = struct.unpack(str(so.n_nodes * so.n_tstep) + 'f', bytes[ headersize + so.n_nodes * 4:headersize + so.n_nodes * 4 + so.n_nodes * so.n_tstep * 4]) so.data = np.asarray(so.data) so.data = so.data.reshape(so.n_tstep, so.n_nodes) return so
[docs] def to_dict(self): return {'n_nodes': self.n_nodes, 'n_tstep': self.n_tstep, 'nodeids': self.nodeids, 'start': self.start, 'interval': self.interval, 'data': self.data}