Source code for laser_cholera.metapop.exposed
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.figure import Figure
[docs]
class Exposed:
def __init__(self, model):
self.model = model
assert hasattr(model, "people"), "Exposed: model needs to have a 'people' attribute."
model.people.add_vector_property("E", length=model.params.nticks + 1, dtype=np.int32, default=0)
assert hasattr(self.model, "params"), "Exposed: model needs to have a 'params' attribute."
assert "E_j_initial" in self.model.params, "Exposed: model params needs to have a 'E_j_initial' parameter."
model.people.E[0] = model.params.E_j_initial
return
[docs]
def check(self):
# Don't bother checking for model.params, we did that in __init__()
assert "iota" in self.model.params, "Exposed: model params needs to have a 'iota' (progression rate) parameter."
if not hasattr(self.model.patches, "non_disease_deaths"):
self.model.patches.add_vector_property("non_disease_deaths", length=self.model.params.nticks + 1, dtype=np.int32, default=0)
return
def __call__(self, model, tick: int) -> None:
E_next = model.people.E[tick + 1]
E = model.people.E[tick]
E_next[:] = E
# Do non-disease mortality first
non_disease_deaths = model.prng.binomial(E, -np.expm1(-model.params.d_jt[tick])).astype(E_next.dtype)
E_next -= non_disease_deaths
model.patches.non_disease_deaths[tick] += non_disease_deaths
return
[docs]
def plot(self, fig: Figure = None): # pragma: no cover
_fig = plt.figure(figsize=(12, 9), dpi=128, num="Exposed") if fig is None else fig
for ipatch in np.argsort(self.model.params.S_j_initial)[-10:]:
plt.plot(self.model.people.E[:, ipatch], label=f"{self.model.params.location_name[ipatch]}")
plt.xlabel("Tick")
plt.ylabel("Exposed")
plt.legend()
yield "Exposed"
return