Source code for laser_cholera.metapop.recovered
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.figure import Figure
[docs]
class Recovered:
def __init__(self, model) -> None:
self.model = model
assert hasattr(model, "people"), "Recovered: model needs to have a 'people' attribute."
model.people.add_vector_property("R", length=model.params.nticks + 1, dtype=np.int32, default=0)
assert hasattr(model, "params"), "Recovered: model needs to have a 'params' attribute."
assert "R_j_initial" in model.params, "Recovered: model params needs to have a 'R_j_initial' (initial recovered population) parameter."
model.people.R[0] = model.params.R_j_initial
return
[docs]
def check(self):
assert hasattr(self.model.people, "S"), "Recovered: model people needs to have a 'S' (susceptible) attribute."
assert "d_jt" in self.model.params, "Recovered: model params needs to have a 'd_jt' (mortality rate) parameter."
assert "epsilon" in self.model.params, "Recovered: model params needs to have a 'epsilon' (waning immunity rate) parameter."
if not hasattr(self.model.patches, "non_disease_deaths"):
self.model.patches.add_vector_property("non_disease_deaths", length=self.model.params.nticks + 1, dtype=np.int32, default=0)
return
def __call__(self, model, tick: int) -> None:
R = model.people.R[tick]
R_next = model.people.R[tick + 1]
S_next = model.people.S[tick + 1]
R_next += R
# natural mortality
non_disease_deaths = model.prng.binomial(R, -np.expm1(-model.params.d_jt[tick])).astype(R_next.dtype)
R_next -= non_disease_deaths
model.patches.non_disease_deaths[tick] += non_disease_deaths
# waning natural immunity - don't include those removed by natural mortality
waned = model.prng.binomial(R - non_disease_deaths, -np.expm1(-model.params.epsilon)).astype(R_next.dtype)
R_next -= waned
S_next += waned
assert np.all(R_next >= 0), f"Negative recovered populations at tick {tick + 1}.\n\t{R_next=}"
return
[docs]
def plot(self, fig: Figure = None): # pragma: no cover
_fig = plt.figure(figsize=(12, 9), dpi=128, num="Recovered") if fig is None else fig
for ipatch in np.argsort(self.model.params.S_j_initial)[-10:]:
plt.plot(self.model.people.R[:, ipatch], label=f"{self.model.params.location_name[ipatch]}")
plt.xlabel("Tick")
plt.ylabel("Recovered")
plt.legend()
yield "Recovered"
return