Source code for laser_measles.abm.components.process_importation_pressure

import numpy as np
from pydantic import BaseModel
from pydantic import Field
from pydantic import field_validator

from laser_measles.abm.model import ABMModel
from laser_measles.base import BasePhase
from laser_measles.utils import cast_type


class ImportationPressureParams(BaseModel):
    """Parameters specific to the importation pressure component."""

    crude_importation_rate: float = Field(default=1.0, description="Yearly crude importation rate per 1k population", ge=0.0)
    importation_start: int = Field(default=0, description="Start time for importation (in days)", ge=0)
    importation_end: int = Field(default=-1, description="End time for importation (in days)", ge=-1)

    @field_validator("importation_end")
    @classmethod
    def validate_importation_end(cls, v, info):
        """Validate that importation_end is greater than importation_start when not -1."""
        if v != -1:
            start = info.data.get("importation_start", 0)
            if v <= start:
                raise ValueError("importation_end must be greater than importation_start")
        return v


[docs] class ImportationPressureProcess(BasePhase): """ Component for simulating the importation pressure in the model. This component handles the simulation of disease importation into the population. It processes: - Importation of cases based on crude importation rate - Time-windowed importation (start/end times) - Population updates: Moves individuals from susceptible to infected state Parameters ---------- model : object The simulation model containing nodes, states, and parameters verbose : bool, default=False Whether to print verbose output during simulation params : Optional[ImportationPressureParams], default=None Component-specific parameters. If None, will use default parameters Notes ----- - Importation rates are calculated per year - Importation is limited to the susceptible population - All state counts are ensured to be non-negative """ def __init__(self, model, verbose: bool = False, params: ImportationPressureParams | None = None) -> None: super().__init__(model, verbose) self.params = params or ImportationPressureParams() def __call__(self, model, tick: int) -> None: if tick < (self.params.importation_start // model.params.time_step_days) or ( self.params.importation_end != -1 and tick > (self.params.importation_end // model.params.time_step_days) ): print(f"Importation pressure not active at tick {tick}") return # state counts states = model.patches.states # population population = states.sum(axis=0, dtype=np.int64) # promote to int64, otherwise binomial draw will fail # Sample actual number of imported cases imported_cases = model.prng.binomial(population, (self.params.crude_importation_rate / 365.0 / 1000.0)) imported_cases = cast_type(imported_cases, states.dtype) # np.minimum(imported_cases, states.S, out=imported_cases) # this is taken care of during the agent level infection flag = 0 infection_component = None for instance in model.instances: if hasattr(instance, "infect"): infection_component = instance flag += 1 if flag != 1: raise RuntimeError("Issue with the infection component") # Select agents randomly for infection for patch_idx, num_imported_cases in enumerate(imported_cases): # select potential new cases from the patch idx = np.where(model.people.patch_id == patch_idx)[0] idx = model.prng.choice(idx, size=num_imported_cases, replace=False) # filter for susceptible cases idx = idx[model.people.state[idx] == model.params.states.index("S")] # infect the selected agents infection_component.infect(model, idx) # update the number of imported cases for the patch after susceptibility filtering imported_cases[patch_idx] = len(idx) # Patch states are now updated by the component's infect method def _initialize(self, model: ABMModel) -> None: pass