Source code for laser_measles.compartmental.components.process_infection

"""
Component for simulating the SEIR infection process in the compartmental model.
"""

from typing import Any

import numpy as np
from pydantic import Field

from laser_measles.base import BaseLaserModel
from laser_measles.components import BaseInfectionParams
from laser_measles.components import BaseInfectionProcess
from laser_measles.mixing.gravity import GravityMixing
from laser_measles.utils import cast_type


class InfectionParams(BaseInfectionParams):
    """Parameters specific to the SEIR infection process component."""

    model_config = {"arbitrary_types_allowed": True}  # noqa: RUF012

    beta: float = Field(default=1.0, description="Base transmission rate", ge=0.0)
    exp_mu: float = Field(default=6.0, description="Exposure mean", gt=0.0)
    inf_mu: float = Field(default=8.0, description="Infection mean", gt=0.0)
    seasonality: float = Field(default=0.0, description="Seasonality factor, default is no seasonality", ge=0.0, le=1.0)
    season_start: float = Field(default=0, description="Season start day (0-364)", ge=0, le=364)
    mixer: Any = Field(default_factory=lambda: GravityMixing(), description="Mixing object")

    @property
    def sigma(self) -> float:
        """Progression rate from exposed to infectious (1/exposure_period)"""
        return 1 / self.exp_mu

    @property
    def gamma(self) -> float:
        """Recovery rate from infection (1/infectious_period)"""
        return 1 / self.inf_mu

    @property
    def basic_reproduction_number(self) -> float:
        """Calculate R0 = beta / gamma"""
        return self.beta / self.gamma

    @property
    def incubation_period(self) -> float:
        """Average incubation period in days"""
        return 1.0 / self.sigma

    @property
    def infectious_period(self) -> float:
        """Average infectious period in days"""
        return 1.0 / self.gamma


[docs] class InfectionProcess(BaseInfectionProcess): """ Component for simulating SEIR disease progression with daily timesteps. This class implements a stochastic SEIR infection process that models disease transmission and progression through compartments. It uses daily rates and accounts for mixing between different population groups. The SEIR infection process follows these steps: 1. Calculate force of infection based on: - Base transmission rate (beta) - Seasonal variation - Population mixing matrix - Current number of infectious individuals 2. Stochastic transitions using binomial sampling: - S → E: New exposures based on force of infection - E → I: Progression from exposed to infectious - I → R: Recovery from infection 3. Update population states for all compartments Parameters ---------- model : object The simulation model containing population states and parameters verbose : bool, default=False Whether to print detailed information during execution params : InfectionParams | None, default=None Component-specific parameters. If None, will use default parameters Notes ----- The infection process uses daily rates and seasonal transmission that varies sinusoidally over time with a period of 365 days. """ def __init__(self, model: BaseLaserModel, params: InfectionParams | None = None, verbose: bool = False) -> None: super().__init__(model, verbose) self.params = params if params is not None else InfectionParams() # set the scenario for the mixing object self.params.mixer.scenario = model.scenario def __call__(self, model: BaseLaserModel, tick: int) -> None: # Get state counts: states is (4, num_patches) for [S, E, I, R] states = model.patches.states # Calculate total population per patch total_patch_pop = states.sum(axis=0) # Avoid division by zero total_patch_pop = np.maximum(total_patch_pop, 1) # Calculate prevalence of infectious individuals in each patch prevalence = states.I # / total_patch_pop # I_j / N_j # Calculate force of infection with seasonal variation seasonal_factor = 1 + self.params.seasonality * np.sin(2 * np.pi * (tick - self.params.season_start) / 365.0) lambda_i = ( (self.params.beta * seasonal_factor * prevalence) @ self.params.mixer.mixing_matrix # recall mixing is pij: i -> j ) # normalize by the population of the patch lambda_i /= total_patch_pop # Stochastic transitions using binomial sampling # 1. S → E: New exposures # prob_exposure = 1 - np.exp(-lambda_i) prob_exposure = -1 * np.expm1(-lambda_i) new_exposures = cast_type(model.prng.binomial(states.S, prob_exposure), states.dtype, round=True) # 2. E → I: Progression to infectious # prob_infection = 1 - np.exp(-self.params.sigma) prob_infection = -1 * np.expm1(-self.params.sigma) new_infections = cast_type(model.prng.binomial(states.E, prob_infection), states.dtype, round=True) # 3. I → R: Recovery # prob_recovery = 1 - np.exp(-self.params.gamma) prob_recovery = -1 * np.expm1(-self.params.gamma) new_recoveries = cast_type(model.prng.binomial(states.I, prob_recovery), states.dtype, round=True) # Update compartments states.S -= new_exposures # S decreases states.E += new_exposures # E increases states.E -= new_infections # E decreases states.I += new_infections # I increases states.I -= new_recoveries # I decreases states.R += new_recoveries # R increases return
# @property # def mixing(self) -> np.ndarray: # """Returns the mixing matrix, initializing if necessary""" # if self._mixing is None: # self._mixing = init_gravity_diffusion(self.model.scenario, self.params.mixing_scale, self.params.distance_exponent) # return self._mixing # @mixing.setter # def mixing(self, mixing: np.ndarray) -> None: # """Sets the mixing matrix""" # self._mixing = mixing # def _initialize(self, model: BaseLaserModel) -> None: # """Initializes the mixing component""" # self.mixing = init_gravity_diffusion(model.scenario, self.params.mixing_scale, self.params.distance_exponent)