Source code for laser_measles.components.base_constant_pop
"""
Component defining the ConstantPopProcess, which handles the birth events in a model with constant population - that is, births == deaths.
"""
import numpy as np
from pydantic import Field
from laser_measles.base import BaseLaserModel
from laser_measles.components import BaseVitalDynamicsParams
from laser_measles.components import BaseVitalDynamicsProcess
class BaseConstantPopParams(BaseVitalDynamicsParams):
"""Parameters specific to the births process component."""
crude_birth_rate: float = Field(default=20, description="Crude birth rate per 1000 people per year", ge=0.0)
@property
def crude_death_rate(self) -> float:
"""Death rate is always equal to birth rate to maintain constant population."""
return self.crude_birth_rate
[docs]
class BaseConstantPopProcess(BaseVitalDynamicsProcess):
"""
A component to handle the birth events in a model with constant population - that is, births == deaths.
Attributes:
model: The model instance containing population and parameters.
verbose (bool): Flag to enable verbose output. Default is False.
initializers (list): List of initializers to be called on birth events.
metrics (DataFrame): DataFrame to holding timing metrics for initializers.
"""
def __init__(self, model: BaseLaserModel, verbose: bool = False, params: BaseConstantPopParams | None = None):
"""
Initialize the Births component.
Parameters:
model (object): The model object which must have a `population` attribute.
verbose (bool, optional): If True, enables verbose output. Defaults to False.
params (BirthsParams, optional): Component parameters. If None, uses model.params.
"""
super().__init__(model, verbose)
self.params = params if params is not None else BaseConstantPopParams()
return
def __call__(self, model, tick) -> None:
"""
Adds new agents to each patch based on expected daily births calculated from CBR. Calls each of the registered initializers for the newborns.
Args:
model: The simulation model containing patches, population, and parameters.
tick: The current time step in the simulation.
Returns:
None
This method performs the following steps:
1. Draw a random set of indices, or size size "number of births" from the population,
"""
raise NotImplementedError("This method should be implemented in the subclass.")
@property
def lambda_birth(self) -> float:
"""birth rate per tick"""
return (1 + self.params.crude_birth_rate / 1000) ** (1 / 365 * self.model.params.time_step_days) - 1
@property
def mu_death(self) -> float:
"""death rate per tick"""
return self.lambda_birth
def calculate_capacity(self, model) -> np.ndarray:
"""
Calculate the capacity of the model.
"""
return model.scenario["pop"].sum()