Source code for laser_measles.mixing.competing_destinations

import numpy as np
import polars as pl
from laser_core.migration import competing_destinations
from pydantic import BaseModel
from pydantic import Field

from laser_measles.mixing.base import BaseMixing


class CompetingDestinationsParams(BaseModel):
    """
    Parameters for the competing destinations mixing model.
    """

    a: float = Field(default=1.0, description="Population source scale parameter", ge=1.0)
    b: float = Field(default=1.0, description="Population target scale parameter")
    c: float = Field(default=1.5, description="Distance exponent")
    k: float = Field(default=0.01, description="Scale parameter (avg trip probability)", ge=0, le=1)
    delta: float = Field(default=0.0, description="Destination selection parameter")


[docs] class CompetingDestinationsMixing(BaseMixing): """ Competing destinations mixing model that accounts for the effects of nearby destinations. Formula: .. math:: M_{i,j} = k \\frac{p_i^{a-1} p_j^b}{d_{i,j}^c} \\left(\\sum_{k \\ne i,j} \\frac{p_k^b}{d_{ik}^c}\\right)^\\delta Where: - M_{i,j}: migration flow from origin i to destination j - k: calibration constant - p_i, p_j, p_k: population at origins/destinations - d_{i,j}, d_{ik}: distances between l ocations - a, b, c, δ: model parameters """ def __init__(self, scenario: pl.DataFrame | None = None, params: CompetingDestinationsParams | None = None): if params is None: params = CompetingDestinationsParams() super().__init__(scenario, params) def get_migration_matrix(self) -> np.ndarray: if len(self.scenario) == 1: return np.array([[0.0]]) distances = self.get_distances() mat = competing_destinations( self.scenario["pop"].to_numpy(), distances, k=1.0, a=self.params.a - 1, b=self.params.b, c=self.params.c, delta=self.params.delta, ) # TODO: find a better k? # normalize w/ k nrm = self.params.k / (np.sum(mat * self.scenario["pop"].to_numpy()[:, np.newaxis], axis=1) / self.scenario["pop"].to_numpy()) mat *= nrm return mat