Source code for laser_measles.mixing.gravity
import numpy as np
import polars as pl
from laser_core.migration import gravity
from pydantic import BaseModel
from pydantic import Field
from laser_measles.mixing.base import BaseMixing
class GravityParams(BaseModel):
"""
Parameters for the gravity migration model.
Formula:
.. math::
M_{i,j} = k \\cdot p_i^{a-1} \\cdot p_j^b \\cdot d_{i,j}^{-c}
Args:
a (float): Population source scale parameter
b (float): Population target scale parameter
c (float): Distance exponent
k (float): Scale parameter
"""
a: float = Field(default=1.0, description="Population source scale parameter", ge=1.0)
b: float = Field(default=1.0, description="Population target scale parameter")
c: float = Field(default=1.5, description="Distance exponent")
k: float = Field(default=0.01, description="Scale parameter (avg trip probability)", ge=0, le=1)
[docs]
class GravityMixing(BaseMixing):
"""
Gravity migration model.
network = (pops_from[:, np.newaxis] ** (a-1)) * (pops_to ** b) * (distances ** (-1 * c))
"""
def __init__(self, scenario: pl.DataFrame | None = None, params: GravityParams | None = None):
if params is None:
params = GravityParams()
super().__init__(scenario, params)
def get_migration_matrix(self) -> np.ndarray:
if len(self.scenario) == 1:
return np.array([[0.0]])
distances = self.get_distances()
mat = gravity(
self.scenario["pop"].to_numpy(), distances, k=1.0, a=self.params.a - 1, b=self.params.b, c=self.params.c
) # TODO: find a better k?
# normalize w/ k
nrm = self.params.k / (np.sum(mat * self.scenario["pop"].to_numpy()[:, np.newaxis], axis=1) / self.scenario["pop"].to_numpy())
mat *= nrm
return mat