rsvsim.misc module

Miscellaneous functions that do not belong anywhere else, *args, start_date=None, readformat=None, outformat=None, as_date=True, **kwargs)[source]

Convert any reasonable object – a string, integer, or datetime object, or list/array of any of those – to a date object. To convert an integer to a date, you must supply a start date.

Caution: while this function and readdate() are similar, and indeed this function calls readdate() if the input is a string, in this function an integer is treated as a number of days from start_date, while for readdate() it is treated as a timestamp in seconds. To change

  • obj (str, int, date, datetime, list, array) – the object to convert

  • args (str, int, date, datetime) – additional objects to convert

  • start_date (str, date, datetime) – the starting date, if an integer is supplied

  • readformat (str/list) – the format to read the date in; passed to sc.readdate()

  • outformat (str) – the format to output the date in, if returning a string

  • as_date (bool) – whether to return as a datetime date instead of a string


either a single date object, or a list of them (matching input data type where possible)

Return type

dates (date or list)

Examples:'2020-04-05') # Returns, 4, 5)[35,36,37], start_date='2020-01-01', as_date=False) # Returns ['2020-02-05', '2020-02-06', '2020-02-07'], readformat='posix') # Interpret as a POSIX timestamp

New in version 1.0.0. New in version 1.2.2: “readformat” argument; renamed “dateformat” to “outformat”, *args, start_date=None, **kwargs)[source]

Convert a string, date/datetime object, or int to a day (int), the number of days since the start day. See also and sc.daydiff(). If a start day is not supplied, it returns the number of days into the current year.

  • obj (str, date, int, list, array) – convert any of these objects to a day relative to the start day

  • args (list) – additional days

  • start_date (str or date) – the start day; if none is supplied, return days since (supplied year)-01-01.


the day(s) in simulation time (matching input data type where possible)

Return type

days (int or list)

Examples: # Returns how many days into the year we are['2021-01-21', '2024-04-04'], start_date='2022-02-22') # Days can be positive or negative

New in version 1.0.0. New in version 1.2.2: renamed “start_day” to “start_date”


Convenience function to find the difference between two or more days. With only one argument, calculate days since 2020-01-01.


diff  = sc.daydiff('2020-03-20', '2020-04-05') # Returns 16
diffs = sc.daydiff('2020-03-20', '2020-04-05', '2020-05-01') # Returns [16, 26]

New in version 1.0.0.

rsvsim.misc.date_range(start_date, end_date, inclusive=True, as_date=False, dateformat=None)

Return a list of dates from the start date to the end date. To convert a list of days (as integers) to dates, use instead.

  • start_date (int/str/date) – the starting date, in any format

  • end_date (int/str/date) – the end date, in any format

  • inclusive (bool) – if True (default), return to end_date inclusive; otherwise, stop the day before

  • as_date (bool) – if True, return a list of objects instead of strings

  • dateformat (str) – passed to date()


dates = sc.daterange('2020-03-01', '2020-04-04')

New in version 1.0.0.

rsvsim.misc.load_data(datafile, columns=None, calculate=True, check_date=True, verbose=True, start_day=None, **kwargs)[source]

Load data for comparing to the model output, either from file or from a dataframe.

  • datafile (str or df) – if a string, the name of the file to load (either Excel or CSV); if a dataframe, use directly

  • columns (list) – list of column names (otherwise, load all)

  • calculate (bool) – whether to calculate cumulative values from daily counts

  • check_date (bool) – whether to check that a ‘date’ column is present

  • start_day (date) – if the ‘date’ column is provided as integer number of days, consider them relative to this

  • kwargs (dict) – passed to pd.read_excel()


pandas dataframe of the loaded data

Return type

data (dataframe)

rsvsim.misc.load(*args, do_migrate=True, update=True, verbose=True, **kwargs)[source]

Convenience method for sc.loadobj() and equivalent to cv.Sim.load() or cv.Scenarios.load().

  • filename (str) – file to load

  • do_migrate (bool) – whether to migrate if loading an old object

  • update (bool) – whether to modify the object to reflect the new version

  • verbose (bool) – whether to print migration information

  • args (list) – passed to sc.loadobj()

  • kwargs (dict) – passed to sc.loadobj()


Loaded object


sim = cv.load('calib.sim') # Equivalent to cv.Sim.load('calib.sim')
scens = cv.load(filename='school-closures.scens', folder='schools')*args, **kwargs)[source]

Convenience method for sc.saveobj() and equivalent to or

  • filename (str) – file to save to

  • obj (object) – object to save

  • args (list) – passed to sc.saveobj()

  • kwargs (dict) – passed to sc.saveobj()


Filename the object is saved to

Examples:'calib.sim', sim) # Equivalent to'calib.sim')'school-closures.scens', folder='schools', obj=scens)
rsvsim.misc.savefig(filename=None, comments=None, **kwargs)[source]

Wrapper for Matplotlib’s savefig() function which automatically stores rsvsim metadata in the figure. By default, saves (git) information from both the rsvsim version and the calling function. Additional comments can be added to the saved file as well. These can be retrieved via cv.get_png_metadata(). Metadata can also be stored for SVG and PDF formats, but cannot be automatically retrieved.

  • filename (str) – name of the file to save to (default, timestamp)

  • comments (str) – additional metadata to save to the figure

  • kwargs (dict) – passed to savefig()


filename = cv.savefig()
rsvsim.misc.migrate(obj, update=True, verbose=True, die=False)[source]

Define migrations allowing compatibility between different versions of saved files. Usually invoked automatically upon load, but can be called directly by the user to load custom objects, e.g. lists of sims.

Currently supported objects are sims, multisims, scenarios, and people.

  • obj (any) – the object to migrate

  • update (bool) – whether to update version information to current version after successful migration

  • verbose (bool) – whether to print warnings if something goes wrong

  • die (bool) – whether to raise an exception if something goes wrong


The migrated object


sims = cv.load('my-list-of-sims.obj')
sims = [cv.migrate(sim) for sim in sims]
rsvsim.misc.git_info(filename=None, check=False, comments=None, old_info=None, die=False, indent=2, verbose=True, frame=2, **kwargs)[source]

Get current git information and optionally write it to disk. Simplest usage is cv.git_info(__file__)

  • filename (str) – name of the file to write to or read from

  • check (bool) – whether or not to compare two git versions

  • comments (dict) – additional comments to include in the file

  • old_info (dict) – dictionary of information to check against

  • die (bool) – whether or not to raise an exception if the check fails

  • indent (int) – how many indents to use when writing the file to disk

  • verbose (bool) – detail to print

  • frame (int) – how many frames back to look for caller info

  • kwargs (dict) – passed to sc.loadjson() (if check=True) or sc.savejson() (if check=False)


cv.git_info() # Return information
cv.git_info(__file__) # Writes to disk
cv.git_info('rsvsim_version.gitinfo') # Writes to disk
cv.git_info('rsvsim_version.gitinfo', check=True) # Checks that current version matches saved file
rsvsim.misc.check_version(expected, die=False, verbose=True)[source]

Get current git information and optionally write it to disk. The expected version string may optionally start with ‘>=’ or ‘<=’ (== is implied otherwise), but other operators (e.g. ~=) are not supported. Note that e.g. ‘>’ is interpreted to mean ‘>=’.

  • expected (str) – expected version information

  • die (bool) – whether or not to raise an exception if the check fails


cv.check_version('>=1.7.0', die=True) # Will raise an exception if an older version is used
rsvsim.misc.check_save_version(expected=None, filename=None, die=False, verbose=True, **kwargs)[source]

A convenience function that bundles check_version with git_info and saves automatically to disk from the calling file. The idea is to put this at the top of an analysis script, and commit the resulting file, to keep track of which version of rsvsim was used.

  • expected (str) – expected version information

  • filename (str) – file to save to; if None, guess based on current file name

  • kwargs (dict) – passed to git_info(), and thence to sc.savejson()


cv.check_save_version('1.3.2', filename='script.gitinfo', comments='This is the main analysis script')
cv.check_save_version('1.7.2', folder='gitinfo', comments={'SynthPops':sc.gitinfo(sp.__file__)})
rsvsim.misc.get_version_pars(version, verbose=True)[source]

Function for loading parameters from the specified version.

Parameters will be loaded for rsvsim ‘as at’ the requested version i.e. the most recent set of parameters that is <= the requested version. Available parameter values are stored in the regression folder. If parameters are available for versions 1.3, and 1.4, then this function will return the following

  • If parameters for version ‘1.3’ are requested, parameters will be returned from ‘1.3’

  • If parameters for version ‘1.3.5’ are requested, parameters will be returned from ‘1.3’, since rsvsim at version 1.3.5 would have been using the parameters defined at version 1.3.

  • If parameters for version ‘1.4’ are requested, parameters will be returned from ‘1.4’


version (str) – the version to load parameters from


Dictionary of parameters from that version

rsvsim.misc.get_png_metadata(filename, output=False)[source]

Read metadata from a PNG file. For use with images saved with cv.savefig(). Requires pillow, an optional dependency. Metadata retrieval for PDF and SVG is not currently supported.


filename (str) – the name of the file to load the data from


rsvsim.misc.get_doubling_time(sim, series=None, interval=None, start_day=None, end_day=None, moving_window=None, exp_approx=False, max_doubling_time=100, eps=0.001, verbose=None)[source]

Alternate method to calculate doubling time (one is already implemented in the sim object).


cv.get_doubling_time(sim, interval=[3,30]) # returns the doubling time over the given interval (single float)
cv.get_doubling_time(sim, interval=[3,30], moving_window=3) # returns doubling times calculated over moving windows (array)
rsvsim.misc.poisson_test(count1, count2, exposure1=1, exposure2=1, ratio_null=1, method='score', alternative='two-sided')[source]

Test for ratio of two sample Poisson intensities

If the two Poisson rates are g1 and g2, then the Null hypothesis is

H0: g1 / g2 = ratio_null

against one of the following alternatives

H1_2-sided: g1 / g2 != ratio_null H1_larger: g1 / g2 > ratio_null H1_smaller: g1 / g2 < ratio_null

  • count1 – int Number of events in first sample

  • exposure1 – float Total exposure (time * subjects) in first sample

  • count2 – int Number of events in first sample

  • exposure2 – float Total exposure (time * subjects) in first sample

  • ratio – float ratio of the two Poisson rates under the Null hypothesis. Default is 1.

  • method – string Method for the test statistic and the p-value. Defaults to ‘score’. Current Methods are based on Gu et. al 2008 Implemented are ‘wald’, ‘score’ and ‘sqrt’ based asymptotic normal distribution, and the exact conditional test ‘exact-cond’, and its mid-point version ‘cond-midp’, see Notes

  • alternative

    string The alternative hypothesis, H1, has to be one of the following

    ’two-sided’: H1: ratio of rates is not equal to ratio_null (default) ‘larger’ : H1: ratio of rates is larger than ratio_null ‘smaller’ : H1: ratio of rates is smaller than ratio_null


pvalue two-sided # stat


‘wald’: method W1A, wald test, variance based on separate estimates ‘score’: method W2A, score test, variance based on estimate under Null ‘wald-log’: W3A ‘score-log’ W4A ‘sqrt’: W5A, based on variance stabilizing square root transformation ‘exact-cond’: exact conditional test based on binomial distribution ‘cond-midp’: midpoint-pvalue of exact conditional test

The latter two are only verified for one-sided example.


Gu, Ng, Tang, Schucany 2008: Testing the Ratio of Two Poisson Rates, Biometrical Journal 50 (2008) 2, 2008

Author: Josef Perktold License: BSD-3

destination statsmodels


Date: 2020feb24

rsvsim.misc.compute_gof(actual, predicted, normalize=True, use_frac=False, use_squared=False, as_scalar='none', eps=1e-09, skestimator=None, estimator=None, **kwargs)[source]

Calculate the goodness of fit. By default use normalized absolute error, but highly customizable. For example, mean squared error is equivalent to setting normalize=False, use_squared=True, as_scalar=’mean’.

  • actual (arr) – array of actual (data) points

  • predicted (arr) – corresponding array of predicted (model) points

  • normalize (bool) – whether to divide the values by the largest value in either series

  • use_frac (bool) – convert to fractional mismatches rather than absolute

  • use_squared (bool) – square the mismatches

  • as_scalar (str) – return as a scalar instead of a time series: choices are sum, mean, median

  • eps (float) – to avoid divide-by-zero

  • skestimator (str) – if provided, use this scikit-learn estimator instead

  • estimator (func) – if provided, use this custom estimator instead

  • kwargs (dict) – passed to the scikit-learn or custom estimator


array of goodness-of-fit values, or a single value if as_scalar is True

Return type

gofs (arr)


x1 = np.cumsum(np.random.random(100))
x2 = np.cumsum(np.random.random(100))

e1 = compute_gof(x1, x2) # Default, normalized absolute error
e2 = compute_gof(x1, x2, normalize=False, use_frac=False) # Fractional error
e3 = compute_gof(x1, x2, normalize=False, use_squared=True, as_scalar='mean') # Mean squared error
e4 = compute_gof(x1, x2, skestimator='mean_squared_error') # Scikit-learn's MSE method
e5 = compute_gof(x1, x2, as_scalar='median') # Normalized median absolute error -- highly robust