plot_school_sizes#
- plot_school_sizes(pop, **kwargs)[source]#
Plot a comparison of the expected and generated school size distribution for each type of school expected.
- Parameters:
pop (pop object) – population, either synthpops.pop.Pop, or dict
**with_school_types (type) – If True, plot school size distributions by type, else plot overall school size distributions
**keys_to_exclude (str or list) – school types to exclude
**left (float) – Matplotlib.figure.subplot.left
**right (float) – Matplotlib.figure.subplot.right
**top (float) – Matplotlib.figure.subplot.top
**bottom (float) – Matplotlib.figure.subplot.bottom
**hspace (float) – Matplotlib.figure.subplot.hspace
**subplot_height (float) – height of subplot in inches
**subplot_width (float) – width of subplot in inches
**screen_height_factor (float) – fraction of the screen height to use for display
**location_text_y (float) – height to add location text to figure
**fontsize (float) – Matplotlib.figure.fontsize
**rotation (float) – rotation angle for xticklabels
**cmap (str or Matplotlib cmap) – colormap
**figname (str) – name to save figure to disk
**comparison (bool) – If True, plot comparison to the generated population
**do_show (bool) – If True, show the plot
**do_save (bool) – If True, save the plot to disk
- Returns:
Matplotlib figure and axes.
Note
If using pop with type sp.people.Pop or dict, args must be supplied for the location parameters to get the expected distribution.
Example:
pars = {'n': 10e3, 'location'='seattle_metro', 'state_location'='Washington', 'country_location'='usa'} pop = sp.Pop(**pars) fig, ax = pop.plot_school_sizes_by_type() popdict = pop.to_dict() kwargs = pars.copy() kwargs['datadir'] = sp.datadir fig, ax = sp.plot_school_sizes(popdict, **kwargs)