Infectivity and transmission#

The following parameters determine aspects of infectivity and disease transmission. For example, how infectious individuals are and the length of time for which they remain infectious, whether the disease can be maternally transmitted, and how population density affects infectivity.

Note

Parameters are case-sensitive. For Boolean parameters, set to 1 for true or 0 for false. Minimum, maximum, or default values of “NA” indicate that those values are not applicable for that parameter.

EMOD does not use true defaults; that is, if the dependency relationships indicate that a parameter is required, you must supply a value for it. However, many of the tools used to work with EMOD will use the default values provided below.

JSON format does not permit comments, but you can add “dummy” parameters to add contextual information to your files. Any keys that are not EMOD parameter names will be ignored by the model.

Parameter

Data type

Minimum

Maximum

Default

Description

Example

Acute_Duration_In_Months

float

0

5

2.9

The time since infection, in months, over which the Acute_Stage_Infectivity_Multiplier is applied to coital acts occurring in that time period.

{
    "Acute_Duration_In_Months": 2.9
}

Acute_Stage_Infectivity_Multiplier

float

1

100

26

The multiplier acting on Base_Infectivity to determine the per-act transmission probability of an HIV+ individual during the acute stage.

{
    "Acute_Stage_Infectivity_Multiplier": 3
}

Base_Infectivity

float

0

1000

0.3

The base infectiousness of individuals before accounting for transmission-blocking effects of acquired immunity and/or campaign interventions.

For STI or HIV simulations, this is the probability of transmission when none of the transmission multipliers apply to a particular coital act (or when all multipliers are set to 1).

{
    "Base_Infectivity": 0.5
}

CD4_At_Death_LogLogistic_Heterogeneity

float

0

100

0

The inverse shape parameter of a Weibull distribution that represents the at-death CD4 cell count.

{
    "CD4_At_Death_LogLogistic_Heterogeneity": 0.7
}

Condom_Transmission_Blocking_Probability

float

0

1

0.9

The per-act multiplier of the transmission probability when a condom is used.

{
    "Condom_Transmission_Blocking_Probability": 0.99
}

Enable_Infectivity_Reservoir

boolean

0

1

0

Controls whether or not an exogeneous reservoir of infectivity will be included in the simulation and allows for the infectivity in a node to be increased additively. When set to 1 (true), the demographics parameter InfectivityReservoirSize is expected in NodeAtttributes for each node.

Warning

Do not set both Enable_Infectivity_Reservoir and Enable_Strain_Tracking to true (1) - as this combination will cause an exception error.

{
    "Enable_Infectivity_Reservoir": 1
}

Enable_Maternal_Infection_Transmission

boolean

0

1

0

Controls whether or not infectious mothers infect infants at birth. Enable_Birth must be set to 1 (true).

Warning

Do not set both Enable_Maternal_Infection_Transmission and Enable_Strain_Tracking to true (1) - as this combination will cause an exception error.

{
    "Enable_Birth": 1,
    "Enable_Maternal_Infection_Transmission": 1
}

Enable_Skipping

boolean

0

1

0

Controls whether or not the simulation uses an optimization that can increase performance by up to 50% in some cases by probabilistically exposing individuals rather than exposing every single person. Useful in low-prevalence, high-population scenarios.

{
    "Enable_Skipping": 0
}

Enable_Termination_On_Zero_Total_Infectivity

boolean

0

1

0

Controls whether or not the simulation should be ended when total infectivity falls to zero. Supported only in single-node simulations.

{
    "Enable_Termination_On_Zero_Total_Infectivity": 1,
    "Minimum_End_Time": 3650
}

Heterogeneous_Infectiousness_LogNormal_Scale

float

0

10

0

Scale parameter of a log normal distribution that governs an infectiousness multiplier. The multiplier represents heterogeneity in infectivity and adjusts Base_Infectivity.

{
    "Heterogeneous_Infectiousness_LogNormal_Scale": 1
}

Infection_Updates_Per_Timestep

integer

0

144

1

The number of infection updates executed during each timestep; note that a timestep defaults to one day.

{
    "Infection_Updates_Per_Timestep": 1
}

Infectious_Period_Constant

float

0

3.40282E+38

-1

The infectious period to use for all individuals, in days, when Infectious_Period_Distribution is set to CONSTANT_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "CONSTANT_DISTRIBUTION",
    "Infectious_Period_Constant": 8
}

Infectious_Period_Distribution

enum

NA

NA

NOT_INITIALIZED

The distribution type to use for assigning the infectious period to each individual in the population. Each individual’s value is a random draw from the distribution.

Possible values are:

NOT_INITIALIZED

No distribution set.

CONSTANT_DISTRIBUTION

Use the same value for each individual. Set Infectious_Period_Constant.

UNIFORM_DISTRIBUTION

Use a uniform distribution with a given minimum and maximum. Set Infectious_Period_Max and Infectious_Period_Min.

GAUSSIAN_DISTRIBUTION

The distribution is Gaussian (or normal). Values are resampled to ensure >= 0. Set Infectious_Period_Gaussian_Mean and Infectious_Period_Gaussian_Std_Dev.

EXPONENTIAL_DISTRIBUTION

The distribution is exponential with a given mean. Set Infectious_Period_Exponential.

WEIBULL_DISTRIBUTION

Use a Weibull distribution with a given shape and scale. Set Infectious_Period_Kappa and Infectious_Period_Lambda.

LOG_NORMAL_DISTRIBUTION

Use a log-normal distribution with a given mean and standard deviation of the natural log. Set Infectious_Period_Log_Normal_Mu and Infectious_Period_Log_Normal_Sigma.

POISSON_DISTRIBUTION

Use a Poisson distribution with a given mean. Set Infectious_Period_Poisson_Mean.

DUAL_CONSTANT_DISTRIBUTION

Use a distribution where some individuals are set to a value of zero and the rest to a given value. Set Infectious_Period_Proportion_0 and Peak_2_Value. This distribution does not use the parameters set for CONSTANT_DISTRIBUTION.

DUAL_EXPONENTIAL_DISTRIBUTION

Use two exponential distributions with given means. Set Infectious_Period_Mean_1, Infectious_Period_Mean_2, and Infectious_Period_Proportion_1. This distribution does not use the parameters set for EXPONENTIAL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "GAUSSIAN_DISTRIBUTION",
    "Infectious_Period_Gaussian_Mean": 4,
    "Infectious_Period_Gaussian_Std_Dev": 1
}

Infectious_Period_Exponential

float

0

3.40282E+38

-1

The mean infectious period, in days, when Infectious_Period_Distribution is set to EXPONENTIAL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "EXPONENTIAL_DISTRIBUTION",
    "Infectious_Period_Exponential": 4.25
}

Infectious_Period_Gaussian_Mean

float

0

3.40282E+38

-1

The mean infectious period, in days, when Infectious_Period_Distribution is set to GAUSSIAN_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "GAUSSIAN_DISTRIBUTION",
    "Infectious_Period_Gaussian_Mean": 4,
    "Infectious_Period_Gaussian_Std_Dev": 1
}

Infectious_Period_Gaussian_Std_Dev

float

1.17549E-38

3.40282E+38

-1

The standard deviation of the infectious period, in days, when Infectious_Period_Distribution is set to GAUSSIAN_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "GAUSSIAN_DISTRIBUTION",
    "Infectious_Period_Gaussian_Mean": 4,
    "Infectious_Period_Gaussian_Std_Dev": 1
}

Infectious_Period_Kappa

float

1.17549E-38

3.40282E+38

-1

The shape value for the infectious period, in days, when Infectious_Period_Distribution is set to WEIBULL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "WEIBULL_DISTRIBUTION",
    "Infectious_Period_Kappa": 0.9,
    "Infectious_Period_Lambda": 1.5
}

Infectious_Period_Lambda

float

1.17549E-38

3.40282E+38

-1

The scale value for the infectious period, in days, when Infectious_Period_Distribution is set to WEIBULL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "WEIBULL_DISTRIBUTION",
    "Infectious_Period_Kappa": 0.9,
    "Infectious_Period_Lambda": 1.5
}

Infectious_Period_Log_Normal_Mu

float

-3.40282e+38

1.70141e+38

3.40282e+38

The mean of the natural log of the infectious period, in days, when Infectious_Period_Distribution is set to LOG_NORMAL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "LOG_NORMAL_DISTRIBUTION",
    "Infectious_Period_Log_Normal_Mu": 9,
    "Infectious_Period_Log_Normal_Sigma": 2
}

Infectious_Period_Log_Normal_Sigma

float

-3.40282e+38

1.70141e+38

3.40282e+38

The standard deviation of the natural log of the infectious period, in days, when Infectious_Period_Distribution is set to LOG_NORMAL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "LOG_NORMAL_DISTRIBUTION",
    "Infectious_Period_Log_Normal_Mu": 9,
    "Infectious_Period_Log_Normal_Sigma": 2
}

Infectious_Period_Max

float

0

3.40282E+38

-1

The maximum infectious period, in days, when Infectious_Period_Distribution is set to UNIFORM_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "UNIFORM_DISTRIBUTION",
    "Infectious_Period_Min": 2,
    "Infectious_Period_Max": 7
}

Infectious_Period_Mean_1

float

1.17549E-38

3.4E+38

-1

The mean of the first exponential distribution, in days, when Infectious_Period_Distribution is set to DUAL_EXPONENTIAL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "DUAL_EXPONENTIAL_DISTRIBUTION",
    "Infectious_Period_Mean_1": 4,
    "Infectious_Period_Mean_2": 12,
    "Infectious_Period_Proportion_1": 0.2
}

Infectious_Period_Mean_2

float

1.17549E-38

3.40282E+38

-1

The mean of the second exponential distribution, in days, when Infectious_Period_Distribution is set to DUAL_EXPONENTIAL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "DUAL_EXPONENTIAL_DISTRIBUTION",
    "Infectious_Period_Mean_1": 4,
    "Infectious_Period_Mean_2": 12,
    "Infectious_Period_Proportion_1": 0.2
}

Infectious_Period_Min

float

0

3.40282E+38

-1

The minimum infectious period, in days, when Infectious_Period_Distribution is set to UNIFORM_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "UNIFORM_DISTRIBUTION",
    "Infectious_Period_Min": 2,
    "Infectious_Period_Max": 7
}

Infectious_Period_Peak_2_Value

float

0

3.40282E+38

-1

The infectious period value, in days, to assign to the remaining individuals when Infectious_Period_Distribution is set to DUAL_CONSTANT_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "DUAL_CONSTANT_DISTRIBUTION",
    "Infectious_Period_Proportion_0": 0.25,
    "Infectious_Period_Peak_2_Value": 5
}

Infectious_Period_Poisson_Mean

float

0

3.40282E+38

-1

The mean of the infectious period, in days, when Infectious_Period_Distribution is set to POISSON_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "POISSON_DISTRIBUTION",
    "Infectious_Period_Poisson_Mean": 5
}

Infectious_Period_Proportion_0

float

0

1

-1

The proportion of individuals to assign a value of zero days infectiousness when Infectious_Period_Distribution is set to DUAL_CONSTANT_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "DUAL_CONSTANT_DISTRIBUTION",
    "Infectious_Period_Proportion_0": 0.25,
    "Infectious_Period_Peak_2_Value": 5
}

Infectious_Period_Proportion_1

float

0

1

-1

The proportion of individuals in the first exponential distribution when Infectious_Period_Distribution is set to DUAL_EXPONENTIAL_DISTRIBUTION.

{
    "Infectious_Period_Distribution": "DUAL_EXPONENTIAL_DISTRIBUTION",
    "Infectious_Period_Mean_1": 4,
    "Infectious_Period_Mean_2": 12,
    "Infectious_Period_Proportion_1": 0.2
}

Infectivity_Exponential_Baseline

float

0

1

0

The scale factor applied to Base_Infectivity at the beginning of a simulation, before the infectivity begins to grow exponentially. Infectivity_Scale_Type must be set to EXPONENTIAL_FUNCTION_OF_TIME.

{
    "Infectivity_Exponential_Baseline": 0.1,
    "Infectivity_Exponential_Delay": 90,
    "Infectivity_Exponential_Rate": 45,
    "Infectivity_Scale_Type": "EXPONENTIAL_FUNCTION_OF_TIME"
}

Male_To_Female_Relative_Infectivity_Ages

array of floats

NA

NA

0

The vector of ages governing the susceptibility of females relative to males, by age. Used with Male_To_Female_Relative_Infectivity_Multipliers.

{
    "Male_To_Female_Relative_Infectivity_Ages": [
        15,
        25,
        35
    ]
}

Male_To_Female_Relative_Infectivity_Multipliers

array of floats

NA

NA

1

An array of scale factors governing the susceptibility of females relative to males, by age. Used with Male_To_Female_Relative_Infectivity_Ages. Scaling is linearly interpolated between ages. The first value is used for individuals younger than the first age in Male_To_Female_Relative_Infectivity_Ages and the last value is used for individuals older than the last age.

{
    "Male_To_Female_Relative_Infectivity_Multipliers": [
        5,
        1,
        0.5
    ]
}

Maternal_Infection_Transmission_Probability

float

0

1

0

The probability of transmission of infection from mother to infant at birth. Enable_Maternal_Infection_Transmission must be set to 1.

Note

For malaria and vector simulations, set this to 0. Instead, use the Maternal_Antibody_Protection, Maternal_Antibody_Decay_Rate, and Maternal_Antibodies_Type parameters.

{
    "Maternal_Infection_Transmission_Probability": 0.3
}

Maternal_Transmission_ART_Multiplier

float

0

1

0.1

The maternal transmission multiplier for on-ART mothers.

{
    "Maternal_Transmission_ART_Multiplier": 0.03
}

Population_Density_C50

float

0

3.40E+38

10

The population density at which R0 for a 2.5-arc minute square reaches half of its initial value. Population_Density_Infectivity_Correction must be set to SATURATING_FUNCTION_OF_DENSITY.

{
    "Population_Density_C50": 30
}

Population_Density_Infectivity_Correction

enum

NA

NA

CONSTANT_INFECTIVITY

Correction to alter infectivity by population density set in the Population_Density_C50 parameter. Measured in people per square kilometer. Possible values are:

  • CONSTANT_INFECTIVITY

  • SATURATING_FUNCTION_OF_DENSITY

Note

Sparsely populated areas have a lower infectivity, while densely populated areas have a higher infectivity, which rises to saturate at the Base_Infectivity value.

{
    "Population_Density_Infectivity_Correction": "SATURATING_FUNCTION_OF_DENSITY"
}

Relative_Sample_Rate_Immune

float

0.001

1

0.1

The relative sampling rate for people who have acquired immunity through recovery or vaccination. The immune threshold at which to downsample is set by Immune_Threshold_For_Downsampling. If set to 1, this will have no effect, even if the individual’s immunity modifier is below threshold. This can be a useful sanity check while learning this feature. Individual_Sampling_Type must be set to ADAPTED_SAMPLING_BY_IMMUNE_STATE.

{
    "Relative_Sample_Rate_Immune": 0.1,
    "Immune_Threshold_For_Downsampling": 0.8,
    "Individual_Sampling_Type": "ADAPTED_SAMPLING_BY_IMMUNE_STATE"
}

STI_Coinfection_Acquisition_Multiplier

float

0

100

10

The per-act HIV acquisition probability multiplier for individuals with the STI coinfection flag.

{
    "STI_Coinfection_Transmission_Multiplier": 13.4,
    "STI_Coinfection_Acquisition_Multiplier": 10
}

STI_Coinfection_Transmission_Multiplier

float

0

100

10

The per-act HIV transmission probability multiplier for individuals with the STI coinfection flag.

{
    "STI_Coinfection_Transmission_Multiplier": 13.4,
    "STI_Coinfection_Acquisition_Multiplier": 10
}

Susceptibility_Type

enum

NA

NA

FRACTIONAL

Controls implementation of an individual’s susceptibility. Currently only relevant to Maternal_Protection_Type parameter. Possible values are:

FRACTIONAL

All agents are assigned equal values between 0 and 1 according to a governing equation as specified by Maternal_Protection_Type.

BINARY

Agents receive a value of either 0 or 1 (complete immunity or susceptibility) with the probability determined by a governing equation as specified by Maternal_Protection_Type.

{
    "Susceptibility_Type": "FRACTIONAL",
    "Enable_Maternal_Protection": 1,
    "Maternal_Protection_Type": "LINEAR_FRACTIONAL"
}