Source code for emodpy_malaria.vector_migration.vector_migration

from collections import defaultdict
from datetime import datetime
from functools import partial
import json
from numbers import Integral
from os import environ, SEEK_SET
from pathlib import Path
from platform import system
from warnings import warn

import numpy as np
import csv

# for from_params()
import scipy.spatial.distance as spspd
from emod_api.demographics import Demographics as Demog

# for from_demog_and_param_gravity()
from geographiclib.geodesic import Geodesic

from emod_api.migration.client import client
from emodpy_malaria.vector_config import add_vector_migration

[docs] class Layer(dict): """ The Layer object represents a mapping from source node (IDs) to destination node (IDs) for a particular age, gender, age+gender combination, or all users if no age or gender dependence. Users will not generally interact directly with Layer objects. """ def __init__(self): super().__init__() return @property def DatavalueCount(self) -> int: """Get (maximum) number of data values for any node in this layer Returns: Maximum number of data values for any node in this layer """ count = max([len(entry) for entry in self.values()]) if len(self) else 0 return count @property def NodeCount(self) -> int: """Get the number of (source) nodes with rates in this layer Returns: Number of (source) nodes with rates in this layer """ return len(self) def __getitem__(self, key): """Allows indexing directly into this object with source node id Args: key (int): source node id Returns: Dictionary of outbound rates for the given node id """ if key not in self: if isinstance(key, Integral): super().__setitem__(key, defaultdict(float)) else: raise RuntimeError(f"Migration node IDs must be integer values (key = {key}).") return super().__getitem__(key)
_METADATA = "Metadata" _AUTHOR = "Author" _DATECREATED = "DateCreated" _TOOLNAME = "Tool" _IDREFERENCE = "IdReference" _MIGRATIONTYPE = "MigrationType" _NODECOUNT = "NodeCount" _DATAVALUECOUNT = "DatavalueCount" _GENDERDATATYPE = "GenderDataType" _AGESYEARS = "AgesYears" _INTERPOLATIONTYPE = "InterpolationType" _NODEOFFSETS = "NodeOffsets" _EMODPYMALARIA = "emodpy-malaria"
[docs] class VectorMigration(object): """Represents vector migration data in a mapping from source node (IDs) to destination node (IDs) with rates for each pairing. A migration file (along with JSON metadata) can be loaded from the static method Migration.from_file() and inspected and/or modified. Migration objects can be started from scratch with Migration(), and populated with appropriate source-dest rate data and saved to a file with the to_file() method. Given migration = Migration(), syntax is as follows: age and gender agnostic: migration[source_id][dest_id] age dependent: migration[source_id:age] # age should be >= 0, ages > last bucket value use last bucket value gender dependent: migration[source_id:gender] # gender one of Migration.MALE or Migration.FEMALE age and gender dependent: migration[source_id:gender:age] # gender one of Migration.MALE or Migration.FEMALE EMOD/DTK format migration files (and associated metadata files) can be written with migration.to_file(<filename>). EMOD/DTK format migration files (with associated metadata files) can be read with migration.from_file(<filename>). """ SAME_FOR_BOTH_GENDERS = 0 ONE_FOR_EACH_GENDER = 1 LINEAR_INTERPOLATION = 0 PIECEWISE_CONSTANT = 1 LOCAL_MIGRATION = 1 REGIONAL_MIGRATION = 3 def __init__(self): self._agesyears = [] try: self._author = _author() except Exception as ex: self._author = "" self._datecreated = datetime.now() self._genderdatatype = self.SAME_FOR_BOTH_GENDERS self._idreference = "" self._interpolationtype = self.PIECEWISE_CONSTANT self._migrationtype = self.LOCAL_MIGRATION self._tool = _EMODPYMALARIA self._create_layers() return def _create_layers(self): self._layers = [] for gender in range(0, self._genderdatatype + 1): for age in range(0, len(self.AgesYears) if self.AgesYears else 1): self._layers.append(Layer()) return @property def AgesYears(self) -> list: """ List of ages - ages < first value use first bucket, ages > last value use last bucket. """ return self._agesyears @AgesYears.setter def AgesYears(self, ages: list) -> None: """ List of ages - ages < first value use first bucket, ages > last value use last bucket. """ if sorted(ages) != self.AgesYears: if self.NodeCount > 0: warn("Changing age buckets clears existing migration information.", category=UserWarning) self._agesyears = sorted(ages) self._create_layers() return @property def Author(self) -> str: """str: Author value for metadata for this migration datafile""" return self._author @Author.setter def Author(self, author: str) -> None: self._author = author return @property def DatavalueCount(self) -> int: """int: Maximum data value count for any layer in this migration datafile""" count = max([layer.DatavalueCount for layer in self._layers]) return count @property def DateCreated(self) -> datetime: """datetime: date/time stamp of this datafile""" return self._datecreated @DateCreated.setter def DateCreated(self, value) -> None: if not isinstance(value, datetime): raise RuntimeError(f"DateCreated must be a datetime value (got {type(value)}).") self._datecreated = value return @property def GenderDataType(self) -> int: """int: gender data type for this datafile - SAME_FOR_BOTH_GENDERS or ONE_FOR_EACH_GENDER""" return self._genderdatatype @GenderDataType.setter def GenderDataType(self, value: int) -> None: # integer value if value in VectorMigration._GENDER_DATATYPE_ENUMS.keys(): value = int(value) # string value elif value in VectorMigration._GENDER_DATATYPE_LOOKUP.keys(): value = VectorMigration._GENDER_DATATYPE_LOOKUP[value] else: expected = [f"{key}/{value}" for key, value in VectorMigration._GENDER_DATATYPE_LOOKUP.items()] raise RuntimeError(f"Unknown gender data type, {value}, expected one of {expected}.") if (self.NodeCount > 0) and (value != self._genderdatatype): warn("Changing gender data type clears existing migration information.", category=UserWarning) if value != self._genderdatatype: self._genderdatatype = int(value) self._create_layers() return @property def IdReference(self) -> str: """str: ID reference metadata value""" return self._idreference @IdReference.setter def IdReference(self, value: str) -> None: self._idreference = str(value) return @property def InterpolationType(self) -> int: """int: interpolation type for this migration data file - LINEAR_INTERPOLATION or PIECEWISE_CONSTANT""" return self._interpolationtype @InterpolationType.setter def InterpolationType(self, value: int) -> None: # integer value if value in VectorMigration._INTERPOLATION_TYPE_ENUMS.keys(): self._interpolationtype = int(value) # string value elif value in VectorMigration._INTERPOLATION_TYPE_LOOKUP.keys(): self._interpolationtype = VectorMigration._INTERPOLATION_TYPE_LOOKUP[value] else: expected = [f"{key}/{value}" for key, value in VectorMigration._INTERPOLATION_TYPE_LOOKUP.items()] raise RuntimeError(f"Unknown interpolation type, {value}, expected one of {expected}.") return @property def MigrationType(self) -> int: """int: migration type for this migration data file - LOCAL | REGIONAL """ return self._migrationtype @MigrationType.setter def MigrationType(self, value: int) -> None: # integer value if value in VectorMigration._MIGRATION_TYPE_ENUMS.keys(): self._migrationtype = int(value) elif value in VectorMigration._MIGRATION_TYPE_LOOKUP.keys(): self._migrationtype = VectorMigration._MIGRATION_TYPE_LOOKUP[value] else: expected = [f"{key}/{value}" for key, value in VectorMigration._MIGRATION_TYPE_LOOKUP.items()] raise RuntimeError(f"Unknown migration type, {value}, expected one of {expected}.") return @property def Nodes(self) -> list: node_ids = set() for layer in self._layers: node_ids |= set(layer.keys()) node_ids = sorted(node_ids) return node_ids @property def NodeCount(self) -> int: """int: maximum number of source nodes in any layer of this migration data file""" count = max([layer.NodeCount for layer in self._layers]) return count
[docs] def get_node_offsets(self, limit: int = 100) -> dict: nodes = set() for layer in self._layers: nodes |= set(key for key in layer.keys()) count = min(self.DatavalueCount, limit) # offsets = {} # for index, node in enumerate(sorted(nodes)): # offsets[node] = index * 12 * count offsets = {node: 12 * index * count for index, node in enumerate(sorted(nodes))} return offsets
@property def NodeOffsets(self) -> dict: """dict: mapping from source node id to offset to destination and rate data in binary data""" return self.get_node_offsets() @property def Tool(self) -> str: """str: tool metadata value""" return self._tool @Tool.setter def Tool(self, value: str) -> None: self._tool = str(value) return def __getitem__(self, key): """allows indexing on this object to read/write rate data Args: key (slice): source node id:gender:age (gender and age depend on GenderDataType and AgesYears properties) Returns: dict for specified node/gender/age """ if self.GenderDataType == VectorMigration.SAME_FOR_BOTH_GENDERS: if not self.AgesYears: # Case 1 - no gender or age differentiation - key (integer) == node id return self._layers[0][key] else: # Case 3 - age buckets, no gender differentiation - key (tuple or slice) == node id:age if isinstance(key, tuple): node_id, age = key elif isinstance(key, slice): node_id, age = key.start, key.stop else: raise RuntimeError(f"Invalid indexing for migration - {key}") layer_index = self._index_for_gender_and_age(None, age) return self._layers[layer_index][node_id] else: if not self.AgesYears: # Case 2 - by gender, no age differentiation - key (tuple or slice) == node id:gender if isinstance(key, tuple): node_id, gender = key elif isinstance(key, slice): node_id, gender = key.start, key.stop else: raise RuntimeError(f"Invalid indexing for migration - {key}") if gender not in [VectorMigration.SAME_FOR_BOTH_GENDERS, VectorMigration.ONE_FOR_EACH_GENDER]: raise RuntimeError(f"Invalid gender ({gender}) for migration.") layer_index = self._index_for_gender_and_age(gender, None) return self._layers[layer_index][node_id] else: # Case 4 - by gender and age - key (slice) == node id:gender:age if isinstance(key, tuple): node_id, gender, age = key elif isinstance(key, slice): node_id, gender, age = key.start, key.stop, key.step else: raise RuntimeError(f"Invalid indexing for migration - {key}") if gender not in [VectorMigration.SAME_FOR_BOTH_GENDERS, VectorMigration.ONE_FOR_EACH_GENDER]: raise RuntimeError(f"Invalid gender ({gender}) for migration.") layer_index = self._index_for_gender_and_age(gender, age) return self._layers[layer_index][node_id] def _index_for_gender_and_age(self, gender: int, age: float) -> int: """ Use age to determine age bucket, 0 if no age differentiation. Use gender data type to offset by # age buckets if gender data type is one for each gender and gender is female Ages < first value use first bucket, ages > last value use last bucket. """ age_offset = 0 for age_offset, edge in enumerate(self.AgesYears): if edge >= age: break gender_span = len(self.AgesYears) if self.AgesYears else 1 gender_offset = gender * gender_span if self.GenderDataType == VectorMigration.ONE_FOR_EACH_GENDER else 0 index = gender_offset + age_offset return index def __iter__(self): return iter(self._layers) _MIGRATION_TYPE_ENUMS = { LOCAL_MIGRATION: "LOCAL_MIGRATION", REGIONAL_MIGRATION: "REGIONAL_MIGRATION" } _GENDER_DATATYPE_ENUMS = { SAME_FOR_BOTH_GENDERS: "SAME_FOR_BOTH_GENDERS", ONE_FOR_EACH_GENDER: "ONE_FOR_EACH_GENDER" } _INTERPOLATION_TYPE_ENUMS = { LINEAR_INTERPOLATION: "LINEAR_INTERPOLATION", PIECEWISE_CONSTANT: "PIECEWISE_CONSTANT" }
[docs] def to_file(self, binaryfile: Path, metafile: Path = None, value_limit: int = 100): """Write current data to given file (and .json metadata file) Args: binaryfile (Path): path to output file (metadata will be written to same path with ".json" appended) metafile (Path): override standard metadata file naming value_limit (int): limit on number of destination values to write for each source node (default = 100) Returns: (Path): path to binary file """ binaryfile = Path(binaryfile).absolute() metafile = metafile if metafile else binaryfile.parent / (binaryfile.name + ".json") actual_datavalue_count = min(self.DatavalueCount, value_limit) # limited to 100 destinations node_ids = set() for layer in self._layers: node_ids |= set(layer.keys()) node_ids = sorted(node_ids) offsets = self.get_node_offsets(actual_datavalue_count) node_offsets_string = ''.join([f"{node:08x}{offsets[node]:08x}" for node in sorted(offsets.keys())]) metadata = { _METADATA: { _AUTHOR: self.Author, _DATECREATED: f"{self.DateCreated:%a %b %d %Y %H:%M:%S}", _TOOLNAME: self.Tool, _IDREFERENCE: self.IdReference, _MIGRATIONTYPE: self._MIGRATION_TYPE_ENUMS[self.MigrationType], _NODECOUNT: self.NodeCount, _DATAVALUECOUNT: actual_datavalue_count }, _NODEOFFSETS: node_offsets_string } if self.AgesYears: # older versions of Eradication do not handle empty AgesYears lists robustly metadata[_METADATA][_AGESYEARS] = self.AgesYears # "Writing metadata to '{metafile}' with metafile.open("w") as handle: json.dump(metadata, handle, indent=4, separators=(",", ": ")) def key_func(k, d=None): return d[k] # layers are in age bucket order by gender, e.g. male 0-5, 5-10, 10+, female 0-5, 5-10, 10+ # see _index_for_gender_and_age() # "Writing binary data to '{binaryfile}' with binaryfile.open("wb") as file: for layer in self: for node in node_ids: destinations = np.zeros(actual_datavalue_count, dtype=np.uint32) rates = np.zeros(actual_datavalue_count, dtype=np.float64) if node in layer: # Sort keys descending on rate and ascending on node ID. # That way if we are truncating the list, we include the "most important" nodes. keys = sorted(layer[node].keys()) # sorted ascending on node ID keys = sorted(keys, key=partial(key_func, d=layer[node]), reverse=True) # descending on rate if len(keys) > actual_datavalue_count: keys = keys[0:actual_datavalue_count] # save rates in ascending order so small rates are not lost when looking at the cumulative sum keys = list(reversed(keys)) destinations[0:len(keys)] = keys rates[0:len(keys)] = [layer[node][key] for key in keys] else: warn(f"No destination nodes found for node {node}", category=UserWarning) destinations.tofile(file) rates.tofile(file) return binaryfile
_MIGRATION_TYPE_LOOKUP = { "LOCAL_MIGRATION": LOCAL_MIGRATION, "REGIONAL_MIGRATION": REGIONAL_MIGRATION } _GENDER_DATATYPE_LOOKUP = { "SAME_FOR_BOTH_GENDERS": SAME_FOR_BOTH_GENDERS, "ONE_FOR_EACH_GENDER": ONE_FOR_EACH_GENDER } _INTERPOLATION_TYPE_LOOKUP = { "LINEAR_INTERPOLATION": LINEAR_INTERPOLATION, "PIECEWISE_CONSTANT": PIECEWISE_CONSTANT }
[docs] def from_file(binaryfile: Path, metafile: Path = None): """Reads migration data file from given binary (and associated JSON metadata file) Args: binaryfile (Path): path to binary file (metadata file is assumed to be at same location with ".json" suffix) metafile (Path): use given metafile rather than inferring metafile name from the binary file name Returns: Migration object representing binary data in the given file. """ binaryfile = Path(binaryfile).absolute() metafile = metafile if metafile else binaryfile.parent / (binaryfile.name + ".json") if not binaryfile.exists(): raise RuntimeError(f"Cannot find migration binary file '{binaryfile}'") if not metafile.exists(): raise RuntimeError(f"Cannot find migration metadata file '{metafile}'.") with metafile.open("r") as file: jason = json.load(file) # these are the minimum required entries to load a migration file assert _METADATA in jason, f"Metadata file '{metafile}' does not have a 'Metadata' entry." metadata = jason[_METADATA] assert _NODECOUNT in metadata, f"Metadata file '{metafile}' does not have a 'NodeCount' entry." assert _DATAVALUECOUNT in metadata, f"Metadata file '{metafile}' does not have a 'DatavalueCount' entry." assert _NODEOFFSETS in jason, f"Metadata file '{metafile}' does not have a 'NodeOffsets' entry." migration = VectorMigration() migration.Author = _value_with_default(metadata, _AUTHOR, _author()) migration.DateCreated = _try_parse_date(metadata[_DATECREATED]) if _DATECREATED in metadata else datetime.now() migration.Tool = _value_with_default(metadata, _TOOLNAME, _EMODPYMALARIA) migration.IdReference = _value_with_default(metadata, _IDREFERENCE, VectorMigration.IDREF_LEGACY) migration.MigrationType = VectorMigration._MIGRATION_TYPE_LOOKUP[_value_with_default(metadata, _MIGRATIONTYPE, "LOCAL_MIGRATION")] migration.GenderDataType = VectorMigration._GENDER_DATATYPE_LOOKUP[_value_with_default(metadata, _GENDERDATATYPE, "SAME_FOR_BOTH_GENDERS")] migration.AgesYears = _value_with_default(metadata, _AGESYEARS, []) migration.InterpolationType = VectorMigration._INTERPOLATION_TYPE_LOOKUP[_value_with_default(metadata, _INTERPOLATIONTYPE, "PIECEWISE_CONSTANT")] node_count = metadata[_NODECOUNT] node_offsets = jason[_NODEOFFSETS] if len(node_offsets) != 16 * node_count: raise RuntimeError(f"Length of node offsets string {len(node_offsets)} != 16 * node count {node_count}.") offsets = _parse_node_offsets(node_offsets, node_count) datavalue_count = metadata[_DATAVALUECOUNT] with binaryfile.open("rb") as file: for gender in range(1 if migration.GenderDataType == VectorMigration.SAME_FOR_BOTH_GENDERS else 2): for age in migration.AgesYears if migration.AgesYears else [0]: layer = migration._layers[migration._index_for_gender_and_age(gender, age)] for node, offset in offsets.items(): file.seek(offset, SEEK_SET) destinations = np.fromfile(file, dtype=np.uint32, count=datavalue_count) rates = np.fromfile(file, dtype=np.float64, count=datavalue_count) for destination, rate in zip(destinations, rates): if rate > 0: layer[node][destination] = rate return migration
[docs] def examine_file(filename): def name_for_gender_datatype(e: int) -> str: return VectorMigration._GENDER_DATATYPE_ENUMS[e] if e in VectorMigration._GENDER_DATATYPE_ENUMS else "unknown" def name_for_interpolation(e: int) -> str: return VectorMigration._INTERPOLATION_TYPE_ENUMS[ e] if e in VectorMigration._INTERPOLATION_TYPE_ENUMS else "unknown" def name_for_migration_type(e: int) -> str: return VectorMigration._MIGRATION_TYPE_ENUMS[e] if e in VectorMigration._MIGRATION_TYPE_ENUMS else "unknown" migration = from_file(filename) print(f"Author: {migration.Author}") print(f"DatavalueCount: {migration.DatavalueCount}") print(f"DateCreated: {migration.DateCreated:%a %B %d %Y %H:%M}") print(f"IdReference: {migration.IdReference}") print(f"MigrationType: {migration.MigrationType} ({name_for_migration_type(migration.MigrationType)})") print(f"NodeCount: {migration.NodeCount}") print(f"NodeOffsets: {migration.NodeOffsets}") print(f"Tool: {migration.Tool}") print(f"Nodes: {migration.Nodes}") return
def _author() -> str: username = "" if system() == "Windows": username = environ["USERNAME"] elif "USER" in environ: username = environ["USER"] return username def _parse_node_offsets(string: str, count: int) -> dict: assert len(string) == 16 * count, f"Length of node offsets string {len(string)} != 16 * node count {count}." offsets = {} for index in range(count): base = 16 * index offset = base + 8 offsets[int(string[base:base + 8], 16)] = int(string[offset:offset + 8], 16) return offsets def _try_parse_date(string: str) -> datetime: patterns = [ "%a %b %d %Y %H:%M:%S", "%a %b %d %H:%M:%S %Y", "%m/%d/%Y", "%Y-%m-%d %H:%M:%S.%f" ] for pattern in patterns: try: timestamp = datetime.strptime(string, pattern) return timestamp except ValueError: pass timestamp = datetime.now() warn(f"Could not parse date stamp '{string}', using datetime.now() ({timestamp})") return timestamp def _value_with_default(dictionary: dict, key: str, default: object) -> object: return dictionary[key] if key in dictionary else default """ utility functions emodpy-utils? """
[docs] def from_params(demographics_file_path: any = None, population: int = 1e6, num_nodes: int = 100, migration_factor: float = 1.0, fraction_rural=0.3, id_ref="IfReference", migration_type=VectorMigration.LOCAL_MIGRATION): """ This function is for creating a migration file that goes with a (multinode) demographics file created from a few parameters, as opposed to one from real-world data. Note that the 'demographics_file_path" input param is not used at this time but in future will be exploited to ensure nodes, etc., match. """ # ***** Write migration files ***** # NOTE: This goes straight from input 'data' -- parameters -- to output file. # We really want to go from input parameters to standard data representation of migration data # and then to file as a separate decoupled step. ucellb = np.array([[1.0, 0.0], [-0.5, 0.86603]]) nlocs = np.random.rand(num_nodes, 2) nlocs[0, :] = 0.5 nlocs = np.round(np.matmul(nlocs, ucellb), 4) # Calculate inter-node distances on periodic grid nlocs = np.tile(nlocs, (9, 1)) nlocs[0 * num_nodes:1 * num_nodes, :] += [0.0, 0.0] nlocs[1 * num_nodes:2 * num_nodes, :] += [1.0, 0.0] nlocs[2 * num_nodes:3 * num_nodes, :] += [-1.0, 0.0] nlocs[3 * num_nodes:4 * num_nodes, :] += [0.0, 0.0] nlocs[4 * num_nodes:5 * num_nodes, :] += [1.0, 0.0] nlocs[5 * num_nodes:6 * num_nodes, :] += [-1.0, 0.0] nlocs[6 * num_nodes:7 * num_nodes, :] += [0.0, 0.0] nlocs[7 * num_nodes:8 * num_nodes, :] += [1.0, 0.0] nlocs[8 * num_nodes:9 * num_nodes, :] += [-1.0, 0.0] nlocs[0 * num_nodes:1 * num_nodes, :] += [0.0, 0.0] nlocs[1 * num_nodes:2 * num_nodes, :] += [0.0, 0.0] nlocs[2 * num_nodes:3 * num_nodes, :] += [0.0, 0.0] nlocs[3 * num_nodes:4 * num_nodes, :] += [-0.5, 0.86603] nlocs[4 * num_nodes:5 * num_nodes, :] += [-0.5, 0.86603] nlocs[5 * num_nodes:6 * num_nodes, :] += [-0.5, 0.86603] nlocs[6 * num_nodes:7 * num_nodes, :] += [0.5, -0.86603] nlocs[7 * num_nodes:8 * num_nodes, :] += [0.5, -0.86603] nlocs[8 * num_nodes:9 * num_nodes, :] += [0.5, -0.86603] distgrid = spspd.squareform(spspd.pdist(nlocs)) nborlist = np.argsort(distgrid, axis=1) npops = Demog.get_node_pops_from_params(population, num_nodes, fraction_rural) migration = VectorMigration() migration.IdReference = id_ref for source in range(num_nodes): for index in range(1, 31): if distgrid.shape[0] > index: destination = int(np.mod(nborlist[source, index], num_nodes)) + 1 tnode = int(np.mod(nborlist[source, index], num_nodes)) idnode = nborlist[source, index] rate = migration_factor * npops[tnode] / np.sum(npops) / distgrid[source, idnode] else: destination = 0 rate = 0.0 migration[source][destination] = rate migration.MigrationType = migration_type return migration
[docs] def from_demog_and_param_gravity_webservice(demographics_file_path: str, params: str, id_ref: str, migration_type=VectorMigration.LOCAL_MIGRATION) -> VectorMigration: """ Calls a webservice (running on a GPU) to calculate the migration patterns quickly. Args: demographics_file_path: Path to the demographics file. params: Path to the json file with parameters for gravity calculation and server url. id_ref: Metadata tag that needs to match corresponding value in demographics file. migration_type: Migration type. Returns: Migration object """ with Path(params).open("r") as f_params: params_url = json.load(f_params) # load rates = client.run(Path(demographics_file_path), params_url) demog = Demog.from_file(demographics_file_path) migration = VectorMigration() nodes = [node.forced_id for node in demog.nodes] # we need a 0-N index for the NumPy array and the node ID for the migration file for i, src in enumerate(nodes): for j, dst in enumerate(nodes): if dst != src: migration[dst][src] = rates[i, j] migration.IdReference = id_ref migration.MigrationType = migration_type return migration
# TODO: just use task to reload the demographics files into an object to use for this
[docs] def from_demographics_and_gravity_params(demographics_object, gravity_params: list, filename: str = None): """ This function takes a demographics object, creates a vector migration file based on the populations and distances of nodes and saves to be used by the sim Args: demographics_object: demographics object created by Demographics class (use Demographics.from_file() to load a demographics file you already have and pass in the returned object) gravity_params: a list of four parameters that will affect the gravity model gravity_params[0] denoted as g[0], etc, and they are used in the following way: migration_rate = g[0] * (from_node_population^(g[1]-1)) * (to_node_population^g[2]) * (distance^g[3]) if rate >= 1, 1 is used. filename: name of migration file to be created and added to the experiment, Default: vector_migration.bin Returns: VectorMigration object """ def _compute_migration_rate(gravity_params, from_node_population, to_node_population, distance): """ Utility function for computing migration rates using gravity model Args: gravity_params: a list of four parameters that will affect the gravity model gravity_params[0] denoted as g[0], etc, and they are used in the following way: migration_rate = g[0] * (from_node_population^(g[1]-1)) * (to_node_population^g[2]) * (distance^g[3]) if migration_rate >= 1, 1 is used. from_node_population: Initial_Population in the from_node to_node_population: Initial_Population in the to_node distance: distance, in kilomenteres, between two nodes Returns: Rate of vector migration from from_node to to_node """ # If home/dest node has 0 pop, assume this node is the regional work node-- no local migration allowed if from_node_population == 0 or to_node_population == 0: return 0 else: migration_rate = gravity_params[0] * (from_node_population ** (gravity_params[1] - 1)) \ * (to_node_population ** gravity_params[2]) * (distance ** gravity_params[3]) final_rate = np.min([1., migration_rate]) return final_rate def _compute_migration_dict(node_list: list, gravity_params: list, exclude_nodes: list = None): """ Utility function for computing migration value map. Args: node_list: list of nodes as dictionaries created from the demographics object gravity_params: a list of four parameters that will affect the gravity model gravity_params[0] denoted as g[0], etc, and they are used in the following way: rate = g[0] * (from_node_population^(g[1]-1)) * (to_node_population^g[2]) * (distance^g[3]) if rate >= 1, 1 is used. exclude_nodes: a list of node ids for nodes you don't want any migration happening to or from. Returns: VectorMigration object based on demographics object that was passed in """ excluded_nodes = set(exclude_nodes) if exclude_nodes else set() v_migration = VectorMigration() geodesic = Geodesic.WGS84 for source_node in node_list: source_id = source_node["NodeID"] src_lat = source_node["NodeAttributes"]["Latitude"] src_long = source_node["NodeAttributes"]["Longitude"] src_pop = source_node["NodeAttributes"]["InitialPopulation"] if source_id in excluded_nodes: continue for destination_node in node_list: if destination_node == source_node: continue dest_id = destination_node["NodeID"] if dest_id in excluded_nodes: continue dst_lat = destination_node["NodeAttributes"]["Latitude"] dst_long = destination_node["NodeAttributes"]["Longitude"] dst_pop = destination_node["NodeAttributes"]["InitialPopulation"] distance = geodesic.Inverse(src_lat, src_long, dst_lat, dst_long, Geodesic.DISTANCE)['s12'] / 1000 # km rate = _compute_migration_rate(gravity_params, src_pop, dst_pop, distance) v_migration[source_id][dest_id] = rate return v_migration nodes = [node.to_dict() for node in demographics_object.nodes] v_migration = _compute_migration_dict(nodes, gravity_params) v_migration.IdReference = demographics_object.idref v_migration.MigrationType = "LOCAL_MIGRATION" # save migration object to file if not filename: filename = f"vector_migration.bin" v_migration.to_file(Path(filename))
# by gender, by age _mapping_fns = { (False, False): lambda m, i, g, a: m[i], (False, True): lambda m, i, g, a: m[i:a], (True, False): lambda m, i, g, a: m[i:g], (True, True): lambda m, i, g, a: m[i:g:a] } # by gender, by age _display_fns = { (False, False): lambda i, g, a, d, r: f"{i},{d},{r}", # id only (False, True): lambda i, g, a, d, r: f"{i},{a},{d},{r}", # id:age (True, False): lambda i, g, a, d, r: f"{i},{g},{d},{r}", # id:gender (True, True): lambda i, g, a, d, r: f"{i},{g},{a},{d},{r}" # id:gender:age }
[docs] def to_csv(): mapping = _mapping_fns[(migration.GenderDataType == VectorMigration.ONE_FOR_EACH_GENDER, bool(migration.AgesYears))] display = _display_fns[(migration.GenderDataType == VectorMigration.ONE_FOR_EACH_GENDER, bool(migration.AgesYears))] print(display("from_node", "to_node", "rate")) for gender in range(1 if migration.GenderDataType == VectorMigration.SAME_FOR_BOTH_GENDERS else 2): for age in migration.AgesYears if migration.AgesYears else [0]: for node in migration.Nodes: for destination, rate in mapping(migration, node, gender, age).items(): print(display(node, gender, age, destination, rate))
[docs] def from_csv(filename_path: str, id_reference: str, migration_type: str = "LOCAL_MIGRATION", author: str = None): """ Create migration from csv file. The file should have columns 'from_node' for the node ids from which vector is migrating, 'to_node' for the node ids that the vector is migrating to, and 'rate' for the migration rate. Example:: from_node,to_node,rate 1, 4, 0.5 4, 1, 0.01 Args: filename_path: name (if same folder) or path+name of the csv file id_reference: IdReference parameter to set for the migration file, it needs to be the same as IdReference parameter in your demographics files. migration_type: "LOCAL_MIGRATION" or "REGIONAL_MIGRATION" setting, "LOCAL_MIGRATION" can have 8 "to_nodes" while "REGIONAL_MIGRATION" can have 30, default is "LOCAL_MIGRATION" author: optional metadata of who is the author(you) of the migration file, default - your username or empty string will be used Returns: Migration object to be manipulated or written out as a file using to_file() function """ migration = VectorMigration() migration.IdReference = id_reference migration._migrationtype = VectorMigration._MIGRATION_TYPE_LOOKUP[migration_type] if author: migration.Author = author with Path(filename_path).open("r") as csvfile: reader = csv.DictReader(csvfile) csv_data_read = False for row in reader: csv_data_read = True migration[int(row['from_node'])][int(row['to_node'])] = float(row['rate']) assert csv_data_read, "Please make sure you have column headers of 'from_node', 'to_node', 'rate' in your file.\n" return migration