idmtools_calibra.algorithms.gpc module# class idmtools_calibra.algorithms.gpc.GPC(x_cols, y_col, training_data, param_info, kernel_mode='RBF', kernel_params=None, verbose=False, debug=False, **kwargs)[source]# Bases: object classmethod from_config(config_fn)[source]# classmethod from_dict(config)[source]# set_training_data(new_training_data)[source]# save(save_to=None)[source]# define_kernel(params)[source]# kernel_xx(x, theta)[source]# static kernel_xp(x, p, theta)[source]# kxx_gpu_wrapper(x, theta, deriv=-1)[source]# kxp_gpu_wrapper(x, p, theta)[source]# assign_rep(sample)[source]# expectation_propagation(theta)[source]# find_posterior_mode(theta, f_guess=None, tol_grad=1e-06, max_iter=100)[source]# negative_log_marginal_likelihood(theta)[source]# negative_log_marginal_likelihood_and_gradient(theta, f_guess=None)[source]# static func_wrapper(f, cache_size=100)[source]# laplace_predict(theta, f_hat, p)[source]# ep_predict(theta, p)[source]# optimize_hyperparameters(x0, bounds=(), k=-1, eps=0.01, disp=True, maxiter=15000)[source]# evaluate(data)[source]# plot_data(samples_to_circle=None)[source]# plot_histogram()[source]# plot(x_center, res=10)[source]# plot_errors(train, test, mean_col, var_predictive_col, truth_col=None, figsize=(16, 10))[source]#