idmtools_calibra.algorithms.separatrix_bhm module#
- class idmtools_calibra.algorithms.separatrix_bhm.SeparatrixBHM(params, constrain_sample_fn=<function SeparatrixBHM.<lambda>>, implausibility_threshold=3, target_success_probability=0.7, num_past_iterations_to_include_in_metamodel=3, samples_per_iteration=32, samples_final_iteration=128, max_iterations=10, training_frac=0.8)[source]#
Bases:
NextPointAlgorithm
Separatrix using Bayesian History Matching
The basic idea of Separatrix is that each simulation results in a success (+1) or a failure (-1), and the success probability varies as a function of the input parameters. We seek an isocline of the the latent success probability function.