idmtools_calibra.algorithms.pbnb.optim_tool_pbnb module#

class idmtools_calibra.algorithms.pbnb.optim_tool_pbnb.OptimToolPBnB(params, s_running_file_name, s_problem_type, constrain_sample_fn=<function OptimToolPBnB.<lambda>>, f_delta=0.6, f_alpha=0.5, i_k_b=3, i_n_branching=4, i_c=120, i_replication=1, i_stopping_max_k=10, i_max_num_simulation_per_run=1500, f_elite_worst_sampling_para=4e-05)[source]#

Bases: NextPointAlgorithm

get_samples_for_iteration(iteration)[source]#
fun_generate_samples_from_df(df_samples)[source]#
fun_probability_branching_and_bound(iteration)[source]#
logging_saver(iteration)[source]#
print_results_for_iteration()[source]#
set_results_for_iteration(iteration, results)[source]#
get_state()[source]#
set_state(state, iteration)[source]#
end_condition()[source]#
get_results_to_cache(results)[source]#
get_final_samples()[source]#
update_summary_table(iteration_state, previous_results)[source]#

copy from NExtPointAlgorithm, output: all_results, summary_table

get_param_names()[source]#
cleanup()[source]#